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Analytical, numerical, and experimental studies of
viscoelastic effects on the performance of soft
piezoelectric nanocomposites+

Jing Li,>P< Zhiren Zhu,® Lichen Fang,*® Shu Guo,® Ugur Erturun, @€ Zeyu Zhu,*®
James E. West,® Somnath Ghosh*®° and Sung Hoon Kang (& *2®

Piezoelectric composite (p-NC) made of a polymeric matrix and piezoelectric nanoparticles with con-
ductive additives is an attractive material for many applications. As the matrix of p-NC is made of visco-
elastic materials, both elastic and viscous characteristics of the matrix are expected to contribute to the
piezoelectric response of p-NC. However, there is limited understanding of how viscoelasticity influences
the piezoelectric performance of p-NC. Here we combined analytical and numerical analyses with experi-
mental studies to investigate effects of viscoelasticity on piezoelectric performance of p-NC. The visco-
elastic properties of synthesized p-NCs were controlled by changing the ratio between monomer and
cross-linker of the polymer matrix. We found good agreement between our analytical models and experi-
mental results for both quasi-static and dynamic loadings. It is found that, under quasi-static loading con-
ditions, the piezoelectric coefficients (ds3) of the specimen with the lowest Young's modulus (~0.45 MPa at
5% strain) were ~120 pC N~%, while the one with the highest Young's modulus (~1.3 MPa at 5% strain) were
~62 pC N7%. The results suggest that softer matrices enhance the energy harvesting performance because
they can result in larger deformation for a given load. Moreover, from our theoretical analysis and experi-
ments under dynamic loading conditions, we found the viscous modulus of a matrix is also important for
piezoelectric performance. For instance, at 40 Hz and 50 Hz the storage moduli of the softest specimen
were ~0.625 MPa and ~0.485 MPa, while the loss moduli were ~0.108 MPa and ~0.151 MPa, respectively.
As piezocomposites with less viscous loss can transfer mechanical energy to piezoelectric particles more
efficiently, the dynamic piezoelectric coefficient (d'ss) measured at 40 Hz (~53 pC N7%) was larger than that
at 50 Hz (~47 pC N7 though it has a larger storage modulus. As an application of our findings, we fabri-
cated 3D piezo-shells with different viscoelastic properties and compared the charging time. The results
showed a good agreement with the predicted trend that the composition with the smallest elastic and
viscous moduli showed the fastest charging rate. Our findings can open new opportunities for optimizing
the performance of polymer-based multifunctional materials by harnessing viscoelasticity.

Introduction

The development trend of portable and wearable electronics
results in a pressing need for harvesting sustainable energy
from ambient environment to power devices." Compared to
large-scale outdoor renewable energy sources, such as water
wave,” wind energy,’ and solar energy,’ mechanical energy is
easily accessible for driving small electronics. Therefore, there
has been growing interest in the use of nanogenerators®” for
sustainable and portable power applications by harvesting
mechanical energy. Active research has been conducted to
utilize devices made of piezoelectric materials as power
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sources for wearable electronics,®® healthcare devices,'**! and
self-powered sensors'>'® by harvesting energy from ambient
vibration or physical activities. For example, Wang and co-
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workers have developed the first nanogenerator based on
piezoelectric ZnO nanowires for energy harvesting.>'*'® In
addition, perovskite-structured ceramics, such as lead zirco-
nate titanate (Pb[Zr,Ti,_,]O;) and barium titanate (BaTiOs3,
BTO thereafter), have been used for its high piezoelectric con-
version efficiency while they are brittle thus allow very limited
deformation before failure.'®' Besides ceramics, piezoelectric
polymers, such as poly(vinylidene fluoride) (PVDF), also have
been used for energy harvesting due to their good piezoelectric
properties and mechanical stabilities™'”'® while they have
limitations in shape formation and allowable strains.

Beyond aforementioned materials, polymer-based piezo-
electric nanocomposite (p-NC) made of a polymeric matrix
and piezoelectric nanoparticles with a small amount of con-
ductive additives®*>® is a new class of material that enables
use of piezoelectricity in a broad range of applications due to
its good conversion efficiency, flexibility in shape formation,
and accommodation of large deformation. To improve the
energy generation capability of p-NC, previous studies deter-
mined the composition of the piezocomposites by measuring
electric outputs as they varied the ratio among the constituents
of composites.’>**3° There have been also efforts to further
enhance the properties of piezocomposites by aligning the
filler piezoelectric particles,®’ modifying particle shapes® or
controlling the porosity.*® In addition, there were also empiri-
cal studies to measure the effects of the polymer matrix on
piezoelectric properties.”® However, there is no quantitative
understanding between the viscoelastic properties of the com-
posites and their piezoelectric properties.

We are inspired by the fact that the matrix that consists of
the major portion of piezoelectric composites is made of visco-
elastic materials. In contrast to the elastic materials that store
all energy upon external forces and release the stored energy
with the removal of the forces, viscoelastic materials lose a
part of the energy during a loading-unloading cycle. As shown
in Fig. 1a, the p-NC with viscoelastic matrix can be described
as combination of elastic and viscous parts. During the defor-
mation process of a viscoelastic body, part of the total work of
deformation is dissipated as heat through viscous loss, which
reduces the resulting piezoelectric outputs, because mechan-
ical energy is expected to be efficiently transferred to piezoelec-
tric particles through the matrix. Then, the remaining energy,
which is stored as elastic strain energy, can be converted to
electrical energy. Therefore, both elastic and viscous parts of
the viscoelastic piezocomposite play important roles in the
resulting piezoelectric outputs. Thus, the energy harvesting
performance can be further enhanced by optimizing the visco-
elastic properties of the composite for the efficient transfer of
mechanical energy to the active piezoelectric material.

Here, we report analytical, numerical, and experimental
studies to systematically investigate the effects of viscoelasticity
on the piezoelectric performance of soft piezoelectric nano-
composite (p-NC) under both quasi-static and dynamic loading
conditions. We first derive analytical expressions that consider
small viscoelastic deformation of the p-NC. Then, we validate
the analytical model with experiments by synthesizing and
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Fig. 1 Schematic illustrations of (a) a viscoelastic piezoelectric nano-
composite consists of both elastic part and viscous part, which can
store energy through elastic deformation and dissipate energy through
viscous loss, respectively, (b) the theoretical analysis setting for a
measured piezoelectric response of a p-NC under compression, and (c)
the energy storage and dissipation during the deformation process from
the loading loop of a viscoelastic material.

testing p-NCs with different viscoelastic properties. We also use
experimentally validated numerical models to systematically
investigate effects of different material parameters and to
predict the evolution of electric field under dynamic loading
conditions. The numerical model can help us to find an optimal
set of material parameters in p-NCs for best piezoelectric per-
formance. As potential applications of the findings, we fabricate
3D shell piezoelectric structures using p-NCs with different
viscoelastic properties to charge a commercial capacitor and
compare the charging rates to demonstrate the piezoelectric per-
formance of the p-NC with different viscoelastic properties.

Analytic studies

An analytic model coupling the piezoelectric behavior and the
small viscoelastic deformation of the p-NC is developed from
energy conservation during energy conversion. The setting for
theoretical analysis of piezoelectric response of a p-NC under
compression is shown in Fig. 1b. The p-NC is sandwiched
between two flat plates and the loading direction is parallel to
the polarization direction. The piezoelectric responses are
monitored by the connected electronics.

This journal is © The Royal Society of Chemistry 2017
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We assumed that p-NCs have constant volume under
loading and the stored deformation energy is uniformly dis-
tributed within the p-NC by approximating that the conductive
nanoparticles have negligible contributions to the stress distri-
bution within the p-NC. As demonstrated in Fig. 1a, during
the deformation process of a viscoelastic p-NC, a part of the
total work of deformation is dissipated as heat through
viscous loss, while the remainder energy is stored as elastic
strain energy, which can be converted to electrical energy.
Therefore, the effective mechanical energy applied to the
piezoelectric particles (Wpie,0) can be calculated as eqn (1):

Wpiezo = Vpiezo ( Us — UD) (1)

where Vpie,0 is the volume of piezoelectric particles, Us and Up, are
the stored deformation energy density (energy/volume) and
viscously dissipated energy density, respectively. The p-NC
is assumed to be transversely isotropic with a polarization direc-
tion normal to the surface. The electrical energy density (Ug) can
be described as Ug = epiezo|E|2/2 (epieso permittivity of piezoelectric
particles, E: electric field vector).”> When electric charges are
generated by the piezoelectric particles, the electric potential
energy (Wg) among the p-NC can be described as eqn (2):

Wi = VUg = Vepieno|E|” /2 (2)

where V is the volume of the p-NC.

Because the electric potential energy is generated from the
mechanical energy applied to the piezoelectric particles, we
assume that the effective mechanical energy applied to the
piezoelectric particles (Wpieso) is equal to the converted electri-
cal energy (Wg). Therefore, by combining eqn (1) and (2), the
magnitude of electric field vector (E) can be written as eqn (3):

2Vpiezo(US - UD)

| = [l
Epiezo

(3)

Piezoelectric coefficient (dj) is used to quantify the direct
piezoelectric effect, and it’s expressed as d; = D;/o; (D; is the
electric displacement and o; is the applied stress).>® The sub-
scripts “i” and ¢ indicate the directions of the induced elec-
trical field and the mechanical loading, respectively. For
example, ds; is for the situation when the electric field and the
mechanical loading are both along the polarization axis (“3”
direction). Here E; is the only nonzero component in electric
field vector (E), so E; = |E|. Then, according to the definition
of electric displacement, we have D; = epncEs = €pnclE|,””
where e, nc is the permittivity of the p-NC. By combining with
eqn (3), the piezoelectric constant in the polarization direction
(d33) can be described as eqn (4):

2 Vpiezo ( US - UD)
Epiezo 14

D; &,
_ _ ¢p-NC
dzs =—=

03 03

(4)

Additionally, the energy storage and dissipation can be
quantified from the hysteretic stress-strain curve as the area of
the loop being equal to the energy lost during the loading-
unloading cycle.*® Fig. 1c shows the schematic of the energy
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storage and dissipation during the deformation process from a
cyclic loading loop of a viscoelastic material. In the figure, the
pink area indicates the dissipated energy during the loading/
unloading cycle through viscous losses. The green area indi-
cates the stored strain energy, which can be transferred to
piezoelectric particles for generating electrical output.

Here, the p-NC is assumed to be a linear viscoelastic
material and the loading/unloading moduli were kept constant
at small deformation. Thus, under the quasi-static loading
condition, the stored deformation energy density (Us) and vis-
cously dissipated energy density (Up) of the composite
material system can be obtained from the loading defor-
mation/unloading recovery moduli, given as (see ESI S1} for
the derivation details) eqn (5) and (6):

1
Us:—EdSZ (5)
2
1/1 1
Up==(——=)c 6
L Z(Ed Er)g (6)

where Eq and E, are the loading deformation modulus and
unloading recovery modulus, respectively; o is the applied stress
and ¢ is the strain. Then, by substituting eqn (5) and (6) into
eqn (4), the piezoelectric coefficient of the p-NC in the polari-
zation direction (ds3) can be written as eqn (7) under quasi-
static loading condition (see ESI S17 for the derivation details):

Vpiezo
ds3 = epney [ 7
P VE:€piezo ( )

where e,nc is the permittivity of the p-NC, Ve, is the volume of
piezoelectric particles, V is the volume of the p-NC, &pic,, is the
permittivity of piezoelectric particles. The eqn (7) suggests that
the piezoelectric coefficient (ds;3) is related to the volume fraction
of piezoelectric fillers and the permittivity of the p-NC as well as
the viscoelastic unloading recovery modulus (E;) of the p-NC.

On the other hand, it is known that viscoelastic materials
have elements of viscous properties and exhibit time-depen-
dent strain. The mechanical properties will change as a func-
tion of the loading frequency under the dynamic loading con-
ditions. Therefore, to further explore the viscoelastic influence
on the piezoelectric response, we conducted dynamic analysis.
Mathematically, to determine the stress and strain relation of
the viscoelastic materials, elasticity and viscosity terms can be
modeled as linear combinations of spring(s) and dashpot(s),
respectively. Energy is stored in the spring(s) while it is dissi-
pated in the dashpot(s). The eqn (8) and (9) show the energy
storage (Us(t)) and dissipation (Up(t))** based on spring and
dashpot models.

US(0) = 5 3 Guew (1) = 3 S Jnowa” (0 (8)

Un(6) = 3 atan () = 3 huan’ (0) (9)

where G, is the elastic modulus of the n™ spring, J, is its com-
pliance, &5, and oy, are the strain and stress of the nh spring,
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respectively, 77, is the coefficient of viscosity of the n™ dashpot
and ¢, is its coefficient of fluidity, £q4, is the rate of strain, and
64n is the stress of the n™ dashpot.

Here, to simplify these equations, the Maxwell mode S
used, which presents the system with a purely viscous damper
and a purely elastic spring connected in series, and the visco-
elasticity is described by dynamic modulus (G) that consists of
storage modulus (G') and loss modulus (G"). G’ and G" are
used to define the energy stored in a specimen due to the
applied strain and the dissipation of energy, respectively. At
the point of the maximum strain, the stored energy per unit
volume in the spring of the Maxwell unit in response to the
sinusoidal strain excitation is given by eqn (10):

13940

Us = (¢7/2)G' (10)

The energy dissipated per unit volume over any quarter
cycle of the excitation in the dashpot of the Maxwell unit can
be written as eqn (11):

Up = (ne?/4)G" (11)

By combining the eqn (4), (10) and (11), the piezoelectric
constant (d's;3) under dynamic loading conditions can be
described as eqn (12).

d's;

(12)

_ epc \/zvpiem((ez /2)G' — (ne? /4)G")

o EpiezoV

where strain, ¢ = ¢/G and dynamic modulus, G = VG* 4 G".
Therefore, the eqn (12) can be written as eqn (13):

dlan — —_5PNC 2Vpiero((1/2)G" — (n/4)G") (13)
2 VG? + G"? €piezoV

From the eqn (13), the dynamic piezoelectric coefficient
(d'33) is related to the volume fraction of piezoelectric fillers
and the permittivity of the p-NC. This is same as the quasi-
static case, while both storage and loss moduli of the compo-
site will contribute to the resulting piezoelectric outputs.

Since the polymeric matrix is nearly incompressible, it is
also worthwhile to note the effect of incompressibility on
piezoelectric behaviors. Consider a perfectly incompressible
material (v = 0.5) poled to have a piezoelectric coefficient ds;.
This results in the non-zero piezoelectric stress coefficients

Ev

€31 = €35 = ﬂd33 and €33 = (/1 + 2#)d33, where 4 = m

and y = are the Lamé constants. Note that the piezo-

2(1+v)
electric stress coefficient is defined as emnp = @mjiCjknp, Where
dmj. is the piezoelectric (strain) coefficient discussed earlier
and Cjinp is the elasticity stiffness tensor. From this, we can
deduce esi/ez; = v/(1 — v), and when v = 0.5, e3; = €3 = €33.
In other words, the piezoelectric contribution from a unit
principal strain in the loading direction and that from a unit
principal strain in the transverse direction are equal in an
incompressible material. In the case of pure tension or com-
pression, the Green-Lagrange strain tensor has the non-zero

14218 | Nanoscale, 2017, 9, 14215-14228
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components Eq; = Ey, = (1/a — 1)/2 and E3; = (o® — 1)/2,
where a = a3 is the principal stretch along the loading
direction.”*™* It can be seen that Ey; + E,, + Es; > 0 always
holds, with E;; + E,, + E33 = 0 satisfied only at @ = 1, i.e. no
deformation. For a perfectly incompressible material, we thus
expect the generated electric field to be always in the same
direction when the material is subjected to uniaxial tension
and compression.

Experimental validations

We have conducted experimental studies to verify the theore-
tical analysis in the previous section. We synthesized piezo-
electric nanocomposites (p-NC) with different viscoelastic
properties based on polydimethylsiloxane (PDMS) (Sylgard 184
from Dow Corning) matrix, BaTiO; nanoparticles (BTO NPs)
(available from US Research Nanomaterials, Inc.), and multi-
walled carbon nanotubes (CNTs) (available from US Research
Nanomaterials, Inc.) conductive additives. For synthesis,
multi-walled CNTs and BTO NPs were added to uncured
PDMS. After stirring by planetary revolutionary mixer
(KK-400W, Mazerustar) for 270 seconds, the mixture was set to
cure. The viscoelastic properties of the p-NCs were controlled
by changing the ratio between monomer and cross-linker of
the PDMS matrix.*** The mixing ratios (1) between PDMS
monomor and curing agent were 5:1, 10:1 and 20:1 by
weight, respectively. After curing, Au/Cr electrodes were de-
posited on top and bottom sides of the p-NCs using sputtering
deposition. The detailed sample preparation procedures are
described in the Experimental section and the schematic
diagrams of the fabrication process of the p-NC are shown in
Fig. S1 in ESL{ After electrode deposition, we conducted a
poling process to align dipoles because dipoles are randomly
aligned in as-synthesized piezocomposites.*® The polarization
process of the p-NCs is conducted at 100 kV em™, 140 °C for
30 minutes (see ESI S57 for details).

For the characterization of viscoelastic properties of the
p-NCs, we firstly conducted uniaxial quasi-static loading and
unloading tests followed by cyclic loading tests on specimens
with the matrix mixing ratio 4 =5:1, 10:1, and 20:1 by MTS
Insight 5 electromechanical test system. From the quasi-static
tensile tests, all samples exhibited elastomer-type behaviors,*”
while the elastic modulus of p-NCs with different mixing ratios
showed the same trend as pure PDMS with different mixing
ratios (see ESI S3t). Within the measurement results, we also
note that all p-NCs have good ductility with a high tensile
strain beyond 100%, which is essential for stretchable self-
powered device applications.”

Under quasi-static loading condition, the mechanical
energy storage and dissipation can be quantified by the hyster-
esis loop in the cyclic loading stress—strain curve.*® Therefore,
we conducted cyclic loading-unloading tensile tests of the
p-NCs at different strain values (¢ = 5%, 10%, and 20% at a
strain rate of 0.005 s™') (see ESI S4f for details). The loading
deformation moduli (E4q) of 5:1, 10:1 and 20:1 p-NC are

This journal is © The Royal Society of Chemistry 2017


http://dx.doi.org/10.1039/c7nr05163h

Published on 08 September 2017. Downloaded by Johns Hopkins University on 26/10/2017 19:22:00.

Nanoscale

1.32 + 0.044 MPa, 1.72 + 0.082 MPa, and 0.45 + 0.023 MPa at
& = 5% while the unloading recovery moduli (E,) are 1.45 =+
0.075 MPa, 1.85 + 0.112 MPa and 0.52 + 0.031 MPa, respect-
ively, as shown in Fig. 2a. The small standard deviation within
these samples (n = 5 for each mixing ratio tested) indicates
good repeatability even though the nanofillers are randomly
distributed.

Based on the results shown in Fig. 2a, under 1 MPa loading
stress, the energy density of deformation energy, viscous dissi-
pation energy and effective converted energy of p-NCs were
calculated and plotted in Fig. 2b. The deformation energy per
volume were ~1.11 MJ m™>, ~0.29 MJ m~* and ~0.38 MJ m™>
for 20:1, 10:1 and 5:1 p-NCs, while the viscous dissipation
energy per volume were ~0.149 MJ m >, ~0.021 MJ m* and
~0.034 MJ m™, respectively. Although the viscous dissipation
energy proportion of 20:1 p-NC is the largest (~13.5%) in the
total deformation energy compared to 5:1 and 10: 1 p-NC, the
effective converted energy of 20:1 p-NC is still the largest at a
given load. It is expected that the 20:1 p-NC would have the
best piezoelectric performance among three compositions due
to its best capability to transfer the mechanical energy to the
piezoelectric particles, which will be beneficial for a higher
energy output.

Additionally, the permittivities of the p-NCs were calculated
from measured capacitance values using LCR-meter (LCR-819

. A
from GW Instek) based on the relation C = epnc 3,46 where C

is the capacitance, &,.nc is the permittivity of the p-NC, A and d
are the surface area and thickness of the p-NC, respectively.
The permittivity of the 20:1, 10:1 and 5:1 p-NCs were
~3.95 x 107" Fm™, ~3.26 x 10" F m™" and ~3.04 x 10~
F m™", respectively. The 20:1 p-NC with the largest portion of
PDMS monomer showed the largest dielectric constant while
the 5:1 p-NC showed the smallest one.
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Next, we measured the piezoelectric output of the three
different groups of p-NCs and compared the results with those
from the analytical predictions under quasi-static loading con-
ditions (see ESI S61 for the measurement details). The load is
applied by directly putting a weight to the top surface of p-NCs.
The accumulated charge was measured from a digital electro-
meter (type 616, Keithley), while the real-time charge accumu-
lation profile was recorded by a digital oscilloscope
(TDS2024B, Tektronix). Fig. 2c shows the experimental results
with real-time charge accumulation and dissipation profiles
for the three different groups of p-NCs during loading and
unloading cycles of a 200 g applied weight. The shape of the
charge profile, an immediate rise and fall of the charge in
response to stress along with minimal change during the
loading and unloading states, indicates that the prepared
p-NCs exhibit the typical characteristics of piezoelectric
materials. The accumulated charge amounts of 20:1, 10:1
and 5:1 p-NCs were 225.91 pC, 120.25 pC, and 142.97 pC,
respectively, when the applied weight was 200 g, which is con-
sistent with the predicted trend described in Fig. 2b.

The accumulated charge vs. applied weight (loading force)
plot shows a linear relationship as Fig. 2d. From the plot, the
piezoelectric coefficient (ds3) of 20:1, 10:1 and 5:1 p-NCs
was determined to be ~125 pC N™', ~60 pC N7', and
~68 pC N, respectively. For this testing method, the analyti-
cal calculations based on quasi-static loading condition are
slightly revised due to the fact that the loading methods are
different from the typical quasi-static loading, as shown by the
measurement set-up (see ESI Fig. S61). The strain was directly
derived from the conversion of input mechanical energy to
strain energy. In other words, the lost gravitational potential
energy of the weight is equal to the strain energy: MgAL = VUs =
VE£*/2, where M is the applied weight, AL is the displacement.
Consequently, the dissipation energy density was calculated
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Fig. 2 Mechanical and piezoelectric responses of p-NCs. (a) The loading deformation modulus (Ey) and unloading recovery modulus (E,) of the
p-NCs at ¢ = 0.05(5%) under quasi-static tensile loading. (b) The energy density (under 1 MPa loading stress) of deformation energy, viscously dissi-
pated energy and effectively converted energy of p-NCs. (c) Real-time charge accumulation and dissipation profiles for the three different groups of
p-NCs during dsz measurements using a 200 g applied weight. (d) The charge vs. applied force plot for dz3 measurements. Error bars indicate stan-

dard deviations from 5 independent measurements.
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from the strain. The analytical results (solid lines in Fig. 2d)
showed good agreements with experiments. The data demon-
strate that p-NC with the softest matrix has the best piezoelec-
tric performance due to the largest converted strain energy
under a given loading condition (Fig. 2b). In addition, the
analytical calculation without energy dissipation (dashed lines
in Fig. 2d) overestimated the piezoelectric output of the p-NCs.
This result demonstrates the importance of viscous effects on
the piezoelectric performance of the p-NCs. Both analytical cal-
culations and experimental results clearly indicate that the
piezoelectric response is dependent on both elastic and viscous
properties of the p-NCs.

For the dynamic loading conditions, the storage and loss
moduli of the prepared p-NCs were measured by using
dynamic mechanical analyzer (DMA, TA Instruments TA Q800)
at a constant strain of 0.5%. The storage and loss moduli of
the p-NCs are shown as a function of loading frequencies in
Fig. 3a. When the loading frequency was between 1 and 10 Hz,
both the storage and the loss moduli increased with the
increase of the loading frequency. Based on the eqn (13), it is
expected that the piezoelectric response will decrease with the
loading frequency in this range due to the larger modulus. On
the other hand, for 10 to 100 Hz loading frequency range, the
storage modulus showed a valley at 50 Hz and peak at 70 Hz,
while the valley and peak of the loss modulus were at 30 Hz
and 70 Hz, respectively. These valleys and peaks may come
from the molecular interaction among the PDMS matrix and
the fillers. Based on the eqn (10) and (11), stored energy
density and dissipated energy density were calculated as a
function of loading frequency under 1 MPa loading stress (see
ESI Fig. S71). To decouple the influences of the dynamic
loading on the electric properties, we also measured the per-
mittivity of the p-NC (see ESI S8t for details) as a function of
loading frequencies. We found that the permittivities of the
p-NCs were constant for 1 to 100 Hz loading frequency range,
as shown in Fig. 3b. Therefore, the changes in energy densities
will consequently influence the electrical output as eqn (13).
Based on the results above, we calculated analytically predicted
piezoelectric constants (d';;) under dynamic loading con-
ditions as the solid/dashed lines in Fig. 4a. The plot shows the
expected changes of piezoelectric performance with the
loading frequency.

To verify the analytical predictions, a custom set-up was
built to characterize the piezoelectric performance of the
p-NCs (see ESI S9f for the set-up details) under dynamic
loading conditions. A mini-shaker (type 4810, Briiel & Kjeer)
was used to apply cyclic loadings to the piezocomposites and
the generated loading stresses were monitored by a load cell
(LRM200, 10 Ib, Futek). As dynamic loading force was applied
by a mini-shaker, the p-NC was compressed causing a piezo-
electric potential across the p-NC. The generated electrical
charges were measured by a charge amplifier (piezo film lab
amplifier, TE Connectivity) and an oscilloscope (TDS2024B,
Tektronix). The repeated cycles of in-phase loading force signal
and the output voltage signal of the 20: 1 p-NC at 2 Hz and 10
Hz loadings are shown in Fig. S10a (ESIt). There is no offset
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Fig. 3 Mechanical and electrical response of the p-NCs under dynamic
loading condition. (a) The storage (top) and loss moduli (bottom) as a
function of a loading frequency of the p-NCs. Error bars indicate stan-
dard deviations from 5 independent measurements. (b) The measured
permittivity of each p-NCs as a function of a loading frequency. (All the
connecting dotted lines are for visual guides.)

between the maximum voltage and maximum force. This
suggests that we can precisely estimate the dynamic piezo-
electric coefficients for our p-NCs from the maximum applied
force and maximum output voltage.

As shown in Fig. 4a, the piezoelectric responses of p-NCs
generally changed with the changing loading frequency
because the mechanical response of viscoelastic materials is
dependent on the loading frequency. The 20:1 p-NC with the
smallest storage modulus showed the best piezoelectric per-
formance, which matches with the finding from the quasi-
static testing. Importantly, the predictions that considered the
viscous energy dissipation (solid lines in Fig. 4a) showed good
agreement with the experimental results, while those without
considering the viscous energy dissipation (dashed lines in
Fig. 4a) overestimated the piezoelectric outputs, especially at
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Fig. 4 Piezoelectric response of the p-NCs under dynamic loading
condition. (a) The plots of dynamic piezoelectric coefficient (d's3) as a
function of loading frequencies at 1-100 Hz. (b) Direct-current voltages
measured across a 1000 pF capacitor when it was charged by the piezo-
shell made of 20:1, 10:1 and 5:1 p-NC under 0.5 N compression
loading at 10 Hz. Inset is the equivalent charging circuit. Error bars indi-
cate standard deviations from 5 independent measurements.

10-100 Hz loading frequency range. For example, at 50 Hz, the
storage moduli of the three groups of p-NCs are the smallest,
which indicate that the mechanical deformation energy can be
the largest. Thus, if the viscous effects are neglected, it is
expected that the piezoelectric output will be the highest at
50 Hz. However, from 30 Hz to 70 Hz, the measured dynamic
piezoelectric coefficient (d's3) kept decreasing because of the
increase of the viscous energy losses. This result confirms that
it is important to consider the loss modulus of a matrix
besides the storage modulus because mechanical stress from
an external loading should be efficiently transferred to the
piezoelectric particles through the matrix with minimum
energy dissipation. Due to the highest storage and loss
moduli, the piezoelectric performances of the p-NC were the
worst at 70 Hz. To be noted here is due to instrumental limit-
ation, one single loading pulse cannot last longer than
0.1 s. This means, at low loading frequency (1-10 Hz), a single
loading pulse cannot occupy a cycle time, while the system is
at rest between loading pulses. However, with increase of
loading frequency (>10 Hz), each single loading pulse can fully
occupy its own period and the gaps are eliminated. As a result,
the loading pattern is transiting from repeating single pulses
(quasi-static) to continuous sine wave (dynamic), as Fig. S10at
shows. Thus, for comparison, we plotted estimations from
quasi-static models versus the experimental results at 1-10 Hz
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(Fig. S10b¥) as well. It clearly shows that quasi-static model
works better in lower frequency, while dynamic model is better
when approaching 10 Hz. Therefore, under dynamic loading
conditions, the piezoelectric performances of the viscoelastic
piezocomposites are dependent on the loading frequency and
both the storage and loss moduli contribute to the resulting
piezoelectric outputs. Thus, it is expected that the best piezo-
electric response can be obtained when both the storage and
loss moduli are the smallest.

As a potential application of the findings above, we fabri-
cated flexible 3D piezo-shells made of 20:1 p-NC, 10:1 p-NC
and 5:1 p-NC to charge a commercial capacitor, respectively.
As the equivalent circuit shown in the inset of Fig. 4b, the
piezo-shell was sandwiched by two flat loading plates and con-
nected to a predesigned rectifying circuit composed of a polar-
ized capacitor and bridge rectifier (see ESI S10%1 for the
details). Then, it was activated by 0.5 N compressing loading at
10 Hz to conduct the capacitor charging process. The gener-
ated alternating current (AC) piezoelectric output was fully rec-
tified through the bridge circuit and simultaneously stored in
a commercial capacitor (1000 pF). The entire charging process
was recorded by monitoring the converted direct-current (DC)
potential across the capacitor by using a voltmeter. Fig. 4b
illustrates the charging process of the capacitor with different
piezo-shells. The piezo-shell made of 20:1 p-NC showed the
highest saturation voltage of the capacitor, which is a result of
equilibrium established between the piezo-shell charging rate
and the capacitor’s leakage rate. In addition, the 20:1 p-NC
sample showed the fastest charging rate. The charging rate of the
20:1, 5:1 and 10: 1 piezo-shells was ~16.7 pV s™*, ~8.4 pV s
and ~6.8 pV s ', respectively. The results showed a good
agreement with the analytical and experimental findings that
soft piezoelectric nanocomposites (e.g. 20:1 p-NCs) with
smallest elastic and viscous modulus can result in highest
piezoelectric performance.

Numerical simulations

To further extend the understanding of our analytical findings
by considering finite deformation of objects with complex
shapes made of nonlinear materials, a multi-physics finite
element (FE) model has been developed to couple transient
electromagnetic and dynamic mechanical fields in the time-
domain, based on the theory of electromagnetics in dynami-
cally deforming media.*®*® The model is implemented here to
predict the evolution of electric field in the piezoelectric-visco-
elastic systems subjected to dynamic loading conditions.
Simulations were performed for different geometries and
varying input parameters of p-NC, undergoing finite defor-
mation under dynamic conditions. In addition to providing
verifications for the aforementioned experimental studies, this
robust finite element model allows us to efficiently investigate
the effect of material properties on the piezoelectric perform-
ance of p-NC structures, in configurations that are challenging
to achieve with experiments.
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In the coupled piezoelectric computational model, a two-
way coupling is established between the electric and mechan-
ical fields in a staggered manner. At each time step, the mech-
anical field is first solved, and the electric field is then calcu-
lated accordingly in the updated configuration, with inputs on
the displacement and velocity fields from the deformation
solution. Information of the electric field is transferred back to
the mechanical field in the following time step, to evaluate the
reverse piezoelectric response.*®*® The piezoelectric coupling
is achieved in the reference configuration of the mechanical
problem to accommodate finite deformation, as given in
eqns (14) and (15):

Dy = ExyEy + ¢JCix Eyr (14)
SU _ Si\J/IE + S{’]iezo + S}\J/Iaxwell (15)

where Dy is electrical displacement vector, Eyy is the Green-
Lagrange strain tensor, Ey, is the electric field, € is permittivity,
J is Jacobian of the deformation, and Eyj is the transformed
piezoelectric stress coefficient ey, in the reference configur-
ation. The piezoelectric stress coefficient is defined as ey, =
AmiiCiinp, Where dpj is the piezoelectric (strain) coefficient
that was studied in the experimental section and Cjiy; is the
elasticity stiffness tensor. The stress coefficient is transformed

. 1 _ 14 - 14 -
by the relation EKI] = EJFKm 1emnp (FIn 1FJP 1 +FIP 1F]n 1). As

shown in eqn (15), the second Piola-Kirchhoff stress tensor
(Sy) is the sum of stress contributions from the mechanical
part (Sy¥), the piezoelectric part (S}/°), and the Maxwell

stress (Sy*™<!"), each of which is expressed as:

alPME
GME _ _ 16
IJ (9E1J Qu ( )
Sf]iezo — —EKIJEK (17)
1 B _
S}\J/jaxwell _ Esf[(EPCPQ 1EQ)CIJ ! (18)

— EpEq(Cri 'Ciq ! + Cry 'Ciq )]

Here Cy is the right Cauchy-Green deformation tensor,
PME(Cyy) is the stored elastic energy density, and Qy is the non-
equilibrium viscous stress. The evolution of Qy; is specified by
a rate equation describing the viscoelastic material model;*"*°

027 ey [8_”}
T 8EU

. 1

Qy + z Qy = (19)
where 7 € (0,00) is relaxation time, y € (0,1) is a given para-
meter, ¥ is the deviatoric part of Y™, and Ey is the volume-
preserving part of the strain tensor Ey;.

We first simulate uniaxial cyclic compression tests of the
20:1,10:1 and 5:1 p-NCs and compare the steady-state peak
output surface charge density with the experimental measure-
ments, discussed earlier. Recall that the piezoelectric coeffi-
cient at a given loading frequency is a function of the storage
and loss moduli. At each loading frequency, the input piezo-
electric coefficient of the material is determined according to
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the analytical model of eqn (13), from the measured values of
storage and loss moduli shown in Fig. 3. In the FE model,
viscoelastic behavior of a material is described by a pair of
mechanical parameters, viz. the instantaneous modulus (G,)
and viscous relaxation term (y,). The parameters are calibrated
to satisfy the following two conditions:***°>?

Go = Go(l - /"0) (20)
) = 6o+ ST 1)

where  is the angular frequency of the applied loading, G, is
the equilibrium long-term elastic modulus determined by the
quasi-static loading tests, and G'(w) and z are storage modulus
and relaxation time determined by the dynamic loading tests.
The 3D mesh and boundary conditions of the model are
depicted in Fig. 5a. The plate is grounded at the bottom
surface by setting its electric potential to ¢ = 0 and uniform
cyclic compression load is applied on the top surface, with a
traction magnitude given as:

T, . b
T(t) = -2 [1 + sin (wt - 7)] (22)
2 2
where T, is the maximum prescribed compression in the cyclic

loading process. This is set to be T, = 400 Pa to match the
magnitude of the load in the cyclic loading experiments.
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Fig. 5 Validation of simulation results by comparing with experimental
results for p-NC specimens. (a) 3D model and mesh of the flat plate sub-
jected to a cyclic compressive loading. (b) Comparison between experi-
mental measurements and simulated results for the peak surface charge
density at steady-state of loading with different frequencies, on top
surface of the flat plate. Error bars indicate standard deviations from 5
independent measurements.
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Difference of electric potential (A¢) across the thickness of
the plate is monitored, and peak value at steady-state,
Agp(Tp,w), is recorded to compute the peak surface charge
density p,(Tp,@) according to the eqn (23), stated as:

€
pp(Tp, ) = %Aq)p(Tpvw) (23)

where d is the plate thickness, ¢, = 8.85 x 107** F m™* is the
permittivity in vacuum, and ¢, is the relative permittivity of the
material. The FE predictions of p,(T,,w) are compared with
experimental results in Fig. 5b. The FE model with the cali-
brated material parameters is able to capture the piezoelectric
behavior in the p-NCs under uniaxial cyclic compression and
reproduce the relation between loading frequency and peak
steady-state charge output.

A major advantage of the p-NC is its accommodation of
large deformation. Hence, it is of great interest to investigate
the piezoelectric performance of the material under dynamic,
finite deformation conditions. To accomplish this, we simulate
uniaxial cyclic tension and compression of the 20:1 p-NC
(quasi-static modulus E,, = 450 kPa) at a frequency of 10 Hz. In
addition to examining the effect of finite deformation, the
dependence of piezoelectric output on the direction of applied
loading is characterized by studying both tensile and compres-
sive cyclic loading conditions. Here, we apply peak loading
values of T, = +1 kPa, +10 kPa, and +100 kPa, with the loading
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pattern described by eqn (22). Additionally, we investigate the
effect of material incompressibility on the piezoelectric per-
formance. The original material model is nearly-incompressi-
ble, with Poisson’s ratio set to v = 0.499. We perform the same
set of simulations on a modified material model with
Poisson’s ratio of v = 0.30 and other input parameters, G,
po(w), 7, dz3(w), and &, assumed to be unchanged. In the real
p-NC materials, it is challenging to adjust the Poisson’s ratio
without changing the other properties. However, the compu-
tational models allow for decoupling of these input para-
meters. The time histories of the surface charge density are
shown in Fig. 6a-c, and the measured peak magnitudes of
surface charge density in the aforementioned cases are shown
in Fig. 6d.

We observe that a higher output charge density is produced
for cyclic tension than for cyclic compression with equal mag-
nitude of peak load |T,|. The advantage of applying cyclic
tension is more profound when |T,| is high and the material
is nearly incompressible. For the compressible material model
(v = 0.30), the electric fields generated under cyclic tension
and compression are in opposite directions, which can be
noticed from the time history of output charge in Fig. 6a-c.
However, this is not the case for the nearly incompressible
material model (v = 0.499). When the nearly incompressible
material is subjected to cyclic compression of relatively large
peak load, the piezoelectric field is in the same direction as
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Fig. 6 (a)—(c) The comparison of surface charge density time history under compressive and tensile cyclic loadings for models with different
Poisson'’s ratios (v = 0.30 and 0.499, respectively). (a) Peak load |T,| = 1 kPa; (b) |T,| = 10 kPa; (c) |T,| = 100 kPa. For the compressible material model,
the output signals under large cyclic tensile and compressive loading are in opposite directions. The inset in c is the magnified view. (d) Peak magni-
tude of the surface charge density for compressible (Poisson's ratio v = 0.30) and nearly-incompressible (Poisson’s ratio v = 0.499) models of 20: 1

p-NC under large cyclic deformation.
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that generated by cyclic tension. This can be explained by the
earlier discussion on piezoelectric fields in incompressible
material under large deformation. Since the Poisson’s ratio is
slightly below 0.5 for the nearly incompressible case studied
here, the piezoelectric coefficient e; is slightly larger than es,
and es,. As a result, when the material is subjected to a small
amount of uniaxial compression, the contribution of E; to the
electric field is still stronger than the total contribution due to
Ey1 and E,,, as observed in Fig. 6a. When the material is
further deformed, the generated electric field switches direc-
tion, as seen in Fig. 6b and c. This suggests that, by adjusting
the Poisson’s ratio of the p-NC material, we can control the
possible direction of the piezoelectric field generated under
large deformation conditions.

To further verify the robustness of the calibrated FE model,
we simulate the dynamic loading tests of flexible 3D piezo-
shells as shown in Fig. 7. It is worthwhile to note that in this
configuration, the piezoelectric material is poled along the
radial direction of the curved shell structure, and the plate is
grounded across its inner surface, i.e. ¢(r = r;) = 0. Since the
piezoelectric coupling is performed in the reference configur-
ation, update of the piezoelectric constant tensor is not necess-
ary during the finite deformation simulations. Due to displace-
ments of the deformed structure, the electric potential field is
non-uniform along the outer surface of the shell. An example
of typical distribution is shown in Fig. 7a. In this case, we
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Fig. 7 (a) Electric potential distribution in the 3D model of a p-NC shell
structure subjected to cyclic compression, poled along radial direction
and grounded across inner surface. (b) Comparison of measured vs.
computed peak total surface charges with different frequencies, across
the top surface of the curved shell. Error bars indicate standard devi-
ations from 5 independent measurements.
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compare the peak total surface charge (Q,) across the shell
surface from the relation

Qp(Pp, o) =?[ Agy(Pp, ,x)dA (24)
where P, is the peak compressive load applied, x is the coordi-
nate of the point studied on the shell surface, Ag,, is the peak
difference of electric potential measured across the shell thick-
ness, and A is the surface of the shell structure. As shown in
Fig. 7b, the simulation results are generally in good agreement
with the experimental measurements. The numerical predic-
tions are slightly higher than the experimental measurements.
This may be attributed to some uncertainties in the fabrication
process of the piezo-shell specimens and/or charge leaking
during measurements.

To provide additional guidance to the design of p-NCs, a
sensitivity study is conducted with the FE model to help seek
an optimal set of mechanical parameters for high piezoelectric
performance. We investigated the effects of each of the three
input mechanical parameters, viz. the instantaneous modulus
(Gy), viscous relaxation (u,), and relaxation time (z), on the
peak charge output in a cyclically loaded p-NC plate polarized
in the loading direction shown in Fig. 5a. For a given set of
(Goyto,7), we may determine the storage modulus at an
assigned loading frequency according to eqn (21). Then, we
utilize the available data of experimentally measured pairs of
storage and loss moduli in the synthesized p-NC specimens to
interpolate the corresponding loss modulus (G") for a given
storage modulus (G'). Experimental results discussed earlier,
confirm that permittivity is not significantly altered by the
adjustment of the mechanical parameters in the polymeric
matrix. From eqn (13), we can calculate the piezoelectric con-
stant ds3(G',G") as we adjust the parameters (Go,uo,7), while
maintaining a constant value of piezo-particle volume ratio in
the composite. In the sensitivity study, the loading condition
is set to be uniaxial cyclic compression at 10 Hz, with pattern
described by eqn (22) and maximum load T}, was set to 400 Pa.

Fig. 8 shows the change in time history of surface charge
density, when we adjust Gy, po, and 7, respectively, while
keeping other mechanical input parameters constant. As
shown in the Fig. 8a, when the overall stiffness of the p-NC
material is decreased, an increase in piezoelectric output is
observed. This agrees with the experimental observations dis-
cussed earlier. In the load-control setting examined here, this
is due to the overall increase of piezoelectric constant ds;(G/,
G") when G’ decreases significantly. To examine this phenom-
enon, we can rewrite the eqn (13) as:

2Vpiezo ' %G' — %G"

EpieZOV GIZ + G"2
2Voi

= epncy |- A(G', G")
EpiezoV

where the change of viscoelastic contribution factor A(G’,G")
following the adjustment of G’ and G” dictates the change of

(25)
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Fig. 8 Parametric studies showing effects of controlling viscoelastic properties of p-NC. (a) Comparisons of time history of the surface charge
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piezoelectric performance. For the experimentally measured
pairs of (G',G"), the corresponding values of A(G',G") is shown
in Fig. 8b, with A(G',G") displaying a decreasing trend when G'
is increased. This sheds light on why a higher piezoelectric
output is observed in the softer p-NC specimens and that a
lower overall modulus is desired in this class of material
because the piezoelectric output is proportional to A(G',G") as
in eqn (25).

The effect of material relaxation on the piezoelectric output
can be examined from the results shown in Fig. 8c. When one-
way cyclic loading is applied to the viscoelastic material, relax-
ation in elastic modulus leads to residual stress when the
material is fully unloaded, which is converted to residual
surface charge in the viscoelastic-piezoelectric system. The
buildup of residual charge after each loading cycle leads to the
gradual increase of peak surface charge, until the system
finally reaches an equilibrium state. This phenomenon can be
observed from Fig. 8c that a higher viscous relaxation (u)
allows for a more relaxation in the material, and therefore a
greater increase of peak surface charge after multiple cycles of
one-way loading. This suggests that for applications where
one-way dynamic loading is anticipated, an increased amount
of viscous relaxation is beneficial for higher piezoelectric peak
output.

Fig. 8d shows the effect of relaxation time (z) on the time
history of surface charge density. In this case, given an applied
loading frequency of 10 Hz and constant G, and p, in the

This journal is © The Royal Society of Chemistry 2017

material model, a moderate relaxation time (z = 0.1 s) produces
higher steady-state peak surface charge than those with much
shorter (z = 0.01 s) or much longer relaxation time (z = 1 s).
This can be explained by the fact that viscoelastic solids
respond to loadings in an elastic manner, when undergoing
very fast or very slow processes.”>>* When the loading cycle is
very long relative to the relaxation time, the viscoelastic
material behaves effectively as a softened elastic solid and
minimal residual stress is accumulated during the loading-
unloading process. When the loading cycle is very short rela-
tive to the relaxation time, there is insufficient time for a con-
siderable amount of viscous energy dissipation to occur, and
therefore the viscoelastic material behaves effectively as a stiff
elastic solid. In other words, when the ratio of loading cycle
length to relaxation time is too low or too high, mechanical be-
havior of the material converges towards elasticity, and, con-
sequentially, we can effectively reduce the influence of viscous
energy dissipation. To increase the conversion of applied
mechanical energy to electric energy, it is thus beneficial for
the material’s relaxation time to be much shorter or much
longer relative to the length of the applied loading cycle.

Conclusion

We investigated the viscoelastic effects on piezoelectric per-
formance of soft piezocomposites theoretically and experi-
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mentally under both quasi-static and dynamic loading con-
ditions. Our predictions from analytical and numerical models
showed good quantitative match with experimental results.
Our results show that not only elastic characteristics, but also
viscous properties play important roles in the piezoelectric per-
formance of piezoelectric polymer composites with viscoelastic
matrix. Under quasi-static loading conditions, the piezoelectric
coefficient (ds;) of the specimen with the lowest Young’s
modulus (~0.45 MPa at 5% strain) was ~120 pC N™*, while the
one with the highest Young’s modulus (~1.3 MPa at 5% strain)
was ~62 pC N, Softer matrices with small elastic modulus
enhance the energy harvesting performance because they can
result in larger deformation for a given load. On the other
hand, piezoelectric responses from the p-NCs are dependent
on the loss (viscous) modulus as well as the storage (elastic)
modulus, due to the fact that part of the total work of mechan-
ical deformation energy input is dissipated as heat through
viscous loss which reduces the resulting piezoelectric outputs.
Under dynamic loading conditions, the storage moduli (G’) of
the softest specimen were ~0.625 MPa and ~0.485 MPa at 40
Hz and 50 Hz, while the loss moduli (G”) were ~0.108 MPa
and ~0.151 MPa, respectively. As piezocomposites with less
viscous loss can transfer mechanical energy more efficiently to
piezoelectric particles, the dynamic piezoelectric coefficient
(ds3) measured at 40 Hz (~53 pC N™') was larger than that at
50 Hz (~47 pC N7 ") though it has a larger storage modulus.
From our study, soft piezoelectric nanocomposites with the
smallest elastic and viscous moduli resulted in the highest
piezoelectric performance. To demonstrate the practical
implication of the p-NCs with varied viscoelastic properties, we
fabricated flexible 3D piezo-shells with different viscoelastic
properties and compared the charging time. The charging
rate of the 20:1 (G’ ~ 0.7 MPa, G" ~ 0.1 MPa at 10 Hz), 5:1
(G’ ~ 1.7 MPa, G" ~ 0.15 MPa at 10 Hz), and 10:1 (G’ ~ 2 MPa,
G" ~ 0.23 MPa at 10 Hz) piezo-shells was ~16.7 pV s~ ', ~8.4
pv s and ~6.8 uv s, respectively. The results showed a
good agreement with the predicted trend from theoretical and
experimental studies that the composition with the smallest
elastic and viscous modulus showed the fastest charging rate.
To further extend the understanding of our analytical find-
ings by considering finite deformation of objects with complex
shapes made of nonlinear materials, a multi-physics finite
element model has been developed to couple transient electro-
magnetic and dynamic mechanical fields in the time-domain,
based on the theory of electromagnetics in dynamically
deforming media. Numerical models were first calibrated by
incorporating experimentally measured mechanical properties
and analytical prediction of piezoelectric constant into a
multi-physics finite element framework. Then, we conducted
sensitivity studies using our numerical model to investigate
the relations between input parameters of the p-NC model and
the piezoelectric output to provide guidance for a desired set
of mechanical properties in the studied configuration. In
particular, we investigated the effects of the Poisson’s ratio
and the relaxation time. We found that while the electric fields
generated under cyclic tension and compression are in oppo-
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site directions for the compressible material model (v = 0.30),
they were in the same direction for the nearly-incompressible
material model (v = 0.499). Moreover, we found that it is
beneficial for the material’s relaxation time to be much
shorter or much longer relative to the length of the applied
loading cycle to increase the conversion of applied mechanical
energy to electric energy. When the ratio of loading cycle
length to relaxation time is too low or too high, mechanical
behavior of the material converges towards elasticity, and,
consequentially, we can effectively reduce the influence of
viscous energy dissipation.

Overall, both our theoretical and experimental results
have demonstrated the significant effects of viscoelasticity on
electromechanical behavior of p-NC. Based on the analytical
studies and the numerical simulations, we can further
enhance the energy harvesting performance of soft energy
harvesters and sensitivity of flexible sensors by harnessing the
viscoelasticity of piezocomposites. Our findings are not only
applicable to piezoelectric composites, but also open new
opportunities for optimizing the capabilities of polymer-based
(multi-)functional materials by harnessing the viscoelastic
properties.

Experimental section
Synthesis of the p-NC

(1) The carbon nanotubes (CNTs) and BaTiO; nanoparticles
(BTO NPs) were first dispersed in absolute ethyl alcohol (ACS
reagent, >99.5%, Sigma Aldrich) by magnetic stirring for
5 hours and ultrasonication for 60 minutes and were sub-
sequently mixed with the PDMS monomer (Sylgard 184 avail-
able from Dow Chemical) using revolutionary mixer (KK-400W,
Mazerustar) for 270 seconds. (2) The mixture was placed in an
oven (Lindberg/Blue M™ vacuum ovens, Thermo Scientific™)
at 70 °C until the alcohol completely evaporated. Then, the
PDMS curing agent was added to the mixture, which was then
uniformly dispersed using revolutionary mixer (KK-400W,
Mazerustar) for 180 seconds. The mass ratio between the
PDMS monomer and curing agent was adjusted to control the
mechanical properties. (3) The uncured BTO/CNTs/PDMS com-
posite was poured to the mold and degassed in a vacuum
chamber (Economy vacuum chambers system, A-VAC
Industries). (4) The mixture was then cured in an oven at
120 °C for 20 minutes. Subsequently, the solidified p-NC was
put at the room temperature for 24 hours to ensure that the
p-NC was completely cured. The synthesized p-NC could be cut
into any shape and size according to experimental
requirements.

Piezoelectric coefficient (d;3) measurement

The in-house built piezoelectric coefficient measurement
systems are shown in ESI, S6 and S9,t respectively. For deter-
mining the piezoelectricity coefficient (ds3), the p-NC with
Au/Cr electrodes (thickness ~200 nm) was sandwiched
between two insulated plates. The bottom side plate was fixed

This journal is © The Royal Society of Chemistry 2017


http://dx.doi.org/10.1039/c7nr05163h

Published on 08 September 2017. Downloaded by Johns Hopkins University on 26/10/2017 19:22:00.

Nanoscale

and the loading force was applied by putting different
calibration weights (available from Magikon). The generated
charges were measured by an electrometer (616 digital
Electrometer, Keithley) and an oscilloscope (TDS2024B,
Tektronix). For determining the dynamic piezoelectricity coeffi-
cient (d'33), the p-NC with Au/Cr electrodes was sandwiched
between two insulated plates. One plate was attached to the
mini-shaker (type 4810, Briiel & Kjeer) while the other was con-
nected to the load cell (LRM200, 10 lb, Futek) fixed to the
support frame. The mini-shaker was driven by a synthesized
function generator (DS345, Stanford Research) and a piezo
amplifier (EPA104, Piezo Systems). The loading stress was
measured by the load cell. The charge generated during the
dynamic compression stress was measured by a charge ampli-
fier (Piezo Film Lab Amplifier, TE Connectivity) and an oscillo-
scope (TDS2024B, Tektronix).
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