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Highlights

Extends the wavelet enriched method to finite deformation crystal plasticity FEM.
Adaptively creates optimal discretization spaces conforming to the solution profile.
Projects solution fields onto a set of multi-resolution wavelet basis functions.
Outperforms uniformly refined hierarchical FEM in CPU time and convergence rate.

Abstract

Micromechanical analysis of polycrystalline microstructures of metals and alloys, using crystal plasticity finite element (CPFE)
models is extensively used for predicting deformation and failure under various conditions of strain-rates, creep and fatigue
loading. Many CPFE models involve a large number of degrees of freedom for accurate representation of realistic polycrystalline
microstructures. This can lead to prohibitively high computational costs to conduct meaningful analyses of phenomena of interest.
To overcome this limitation, the authors have recently developed a wavelet enrichment adapted finite element model in Azdoud
and Ghosh (2017) for elastic materials. The method adaptively creates an optimal discretization space conforming to the solution
profile by projecting the solution field onto a set of scaling and multi-resolution wavelet basis functions. This paper extends this
wavelet adapted FE model to finite deformation, crystal plasticity analysis of polycrystalline microstructures. After presenting the
formulations, various validation tests are conducted to examine the convergence rates and computational efficiency of this method.
© 2017 Elsevier B.V. All rights reserved.
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1. Introduction

Micromechanical analysis of polycrystalline microstructures of metals and alloys, using crystal plasticity
models [1-9], is extensively used for predicting deformation and failure under various conditions of strain-rates,
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creep and fatigue loading. Crystal plasticity models account for dislocation glide on crystallographic planes and
associated hardening due to evolving dislocation structures in the crystalline microstructure. Image-based crystal
plasticity finite element (CPFE) modeling and simulations of polycrystalline microstructures are effective methods
for determining microstructure—property relationships. The CPFE models depict details of microstructural features,
e.g. crystallographic orientations, misorientations, grain morphology and their distributions, grain boundary structures
etc. and provide a platform for understanding deformation mechanisms as well as failure processes, such as the
evolution of twins and micro-cracks. Many CPFE models involve a large number of degrees of freedom for accurate
representation of realistic polycrystalline microstructures. This can lead to prohibitively high computational costs to
conduct meaningful analyses of phenomena of interest, such as fatigue failure under cyclic loading or deformation
twin evolution during processing. Unless special computational algorithms are incorporated, e.g. subcycling for
modeling twin evolution in hexagonal close packed (4cp) alloys in [10] or the wavelet transformation induced multi-
time scaling (WATMUS) for fatigue problems in [11,12], the CPFE models are severely constrained in terms of
efficiency.

Various alternative computational methods have been developed to mitigate the efficiency related shortcomings
of CPFE models. The elastic—viscoplastic self-consistent (EVPSC) models in [13,14] treat each grain as an elliptical
inclusion embedded in a homogeneous medium and expedites computations by not having to explicitly represent
stress heterogeneity inside each grain. The fast-Fourier transformation (FFT) based computational methods, proposed
in [6,15-18] for crystal plasticity simulations, are highly efficient especially for large regular sampling grid
simulations with periodicity. Their superior computational efficiency is derived from the low complexity of spectral
solvers with operations of convolution. However, the reliability of this approach on a non-conforming sampling grid
depends on the microstructural periodicity. The use of FFT methods for discontinuous fields or fields with high
gradients can lead to truncation errors due to the Gibbs phenomenon, propagating from the discontinuity. For non-
linear problems, this can lead to a shift in the equilibrium solutions from errors in stresses and strain. Regularization
methods, that have been proposed in [19,20], are currently beginning to be applied to crystal plasticity methods to
correct this effect. Another potential limit of these approaches is the sub-optimal convergence rate due to the non-
conforming sampling grid used, which requires a large number of degrees of freedom for accurate representation.

An important consideration in crystal plasticity finite element simulations is the evolution of deformation induced
localized features such as slip bands, twins or cracks. The evolving microstructural states necessitate adaptive
capabilities that can increase the local resolution with the onset of the localized features. A number of adaptive
methods have been developed over the years to enhance the accuracy and convergence rates of finite element models.
These methods generally rely on a-posteriori estimation of a solution error [21,22], followed by mesh refinement or h-
adaptation [23-25], hierarchical enhancement of polynomial basis functions or p-adaptation [26,27] or a combination
thereof known as h-p methods [28-30]. Mesh enhancement strategy in many of the above methods does not guarantee
conformity of the new enriched space to the profile of the solution. Furthermore, old shape functions are not preserved
in the new enriched solution space, which adds to the difficulty of mapping internal variables. A notable exception is
the s-version adaptive method, where the hierarchical FEM functions are used for enrichment [31]. More recently, the
generalized FEM or GFEM type methods with global-local enrichment have been developed in [32,33] to overcome
these limitations.

In a recent paper [34], the authors have proposed an adaptive wavelet enrichment method for linear elastic finite
element models for polycrystalline microstructures. The method adaptively creates an optimal discretization space
conforming to the solution profile by projecting the solution field onto a set of scaling and multi-resolution wavelet
basis functions. In an iterative enrichment strategy, a fine-scale solution profile is estimated from a computationally
efficient coarse mesh solution in the predictor step. This solution profile is subsequently represented using a fast
wavelet transform and compression method with identification of the optimal discretization basis. In this step, a
second generation family of wavelets [35—-37] is used to generate hierarchical functions that are compatible with finite
element shape functions on an irregular mesh. The multi-resolution wavelet property is advantageous for the selection
of an optimal set of functions that can adaptively enrich the solution space to within a prescribed level of accuracy.

This present paper extends the method developed in [34] to finite deformation, crystal plasticity finite element
models for polycrystalline microstructures of metals and alloys. In Section 2 the finite element formulation for
finite deformation crystal plasticity model is presented. Section 3 develops the adaptive solution enhancement for
crystal plasticity FEM using wavelet basis functions. In Section 4, validation studies are conducted to examine
the convergence rate and computational efficiency of the adaptive method. The paper concludes with a summary
in Section 5.
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2. Finite element formulation for finite deformation crystal plasticity model

This section briefly describes the finite element formulation for quasi-static, finite deformation analysis of a solid
characterized by a crystal plasticity finite element model. For a solid occupying a spatial domain 2 C R, the weak
form of governing equations is obtained through principle of virtual work, in which a space of the virtual displacement
V,(£2) is defined and expressed as:

V()= {Sue H'(2), Su=00n1I,} (1)

where I, corresponds to the Dirichlet boundary. In an incremental solution process delineated by an interval between
times ¢ and ¢t + At, the weak form of the equilibrium equation at time ¢t + At (current configuration) is obtained
by taking the product of the equilibrium equation with the virtual displacement du and integrating over the current
volume as:

/ (Véu' ™) 10 d2 = / SutA tdr,
Qt+Ar

Fé+m

+ / Su T fd2 Vsu'tA e V() )
Qt+At

where t is the time dependent prescribed Neumann boundary condition or traction force applied on the surface I,
and f is the body force. Since the current configuration in Eq. (3) is unknown, an updated Lagrangian formulation is
invoked following formulations in [38]. In an incremental solution process between ¢ and t + At, the configuration at
time ¢ i.e. 2" is assumed to be the reference configuration. The weak form is constructed by mapping the variables to
the reference configuration and integrating the internal virtual work over {2 as:

/ SETY (u) s ST (wyd 2 = qpes Y 3)
QT
where
Displacement increment : u'™*' = u’ + Au (4a)
1 [aa dou\"
Green—Lagrange strain : Eﬁ+A’(u) == 4 + 1
2 | ox! ox!
1 |/3Aau\" AU
+ 2 {( ax’ ) ox! } (46)
-1 -
2nd Piola—Kirchhoff stress : S (u) = J/ ™ (Ffrm) g!ta <F§+At> (4c)

. A
External virtual work : 253 = / sutAtdnN
Qi+t

+ / s sutttdr, (4d)
rirat

where F corresponds to the deformation gradient tensor and J is the Jacobian. In an incremental form, the second
Piola—Kirchhoff stress and the Green—Lagrange strain are respectively decomposed as:

S£+At — o'+ AS  and E;+A’ = AE' = Ae'(Au) + Ap'(Au) )

S; %" is the second Piola—Kirchhoff stress at time 7 + Ar measured in the reference configuration at time 7, ¢ is the

Cauchy stress at time ¢, and AS’ denotes the increment of stress from time 7 to ¢ + A¢. A similar formalism is applied

for the Green—Lagrange strain tensor and in the equations that follow. The linear partis Ae’(Au) = % [( %ﬁ,“ ) ! + 8£,“]

l(aAu)T dAu

and the nonlinear part is given as Ap'(Auw) = 3(57) 54

rewritten as:

/ SEt . ASt(u)dQ—l—f (Sﬂt :O'td-Q — mem t+A1 _f (set . o_tdQ (6)
o ! 0!

Substituting these decompositions, Eq. (3) can be
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The incremental form of the constitutive relation for the nonlinear material model is written in terms of the increments
of the second Piola—Kirchhoff stress and Green—Lagrange strain, which is written as:

AS' = C'(u) : AE (u) ~ C'(u) : Ae'(u) 8

where C' is the local material tangent stiffness matrix that can be obtained from the crystal plasticity constitutive
model. Substituting Eq. (8) in (6), and assuming that SE' ~ §e', the linearized weak form is obtained as:

/ Se:C’(u)-Ae(u)d.Q—i—/ sn:afdﬁzmm”“—/ se:a'df )
01! 0! (el

The non-linear weak form in Eq. (6) is solved by using an iterative scheme such as the Newton—Raphson
method [39]. In the ith Newton—Raphson iterate, the spatially discretized linearized form in (9) is written as:

Kiu =biin — Ri (10)

where K! is the global tangent stiffness matrix corresponding to the ith Newton-Raphson iteration and the
displacement update for every iteration is given as:

Aut = Ad +u (11)

Furthermore, b, 5, — Ri is the residual force vector defined as the difference between the external and internal
force vectors in the updated Lagrangian framework and are respectively expressed as a function of the discretization
variables as:

K@:/ BTC”"BdQ-I—/ By, 0" By, d? (12a)
0! kel
R;‘:f B'o"d2 (12b)
0
b = / NTF+8 g0 + / NTE+ 4 (12¢)
! rt

Here C'' is the elasto-plastic tangent stiffness matrix at ith Newton-Raphson iteration, B is the linear strain—
displacement matrix, By is the nonlinear strain—displacement matrix and N is the matrix of shape functions. The
Newton—Raphson iterations continue till the magnitude of the residual b, »; — Rﬁ is below a predetermined tolerance.
Alternatively, a super-linear quasi-Newton solver with the Broyden’s update [40,41] has been used to alleviate the
cost of recalculating and re-factorizing the stiffness matrix with a direct solver.

2.1. Crystal plasticity constitutive model

Deformation in single and polycrystalline metals and alloys is conventionally simulated using crystal plasticity
finite element (CPFE) models. Crystal plasticity constitutive models account for dislocation glide on crystallographic
slip systems. A significant body of work exists on micromechanical modeling using crystal plasticity models due to
glide on slip systems in [1-5,7,9,12,42] using power law description and the thermally activated theory of plastic
flow. A crystal plasticity constitutive model for plastic deformation of hexagonal close-packed or hcp materials such
as magnesium alloys has been proposed in [8,10]. This is adopted in the present work. The slip systems are distributed
into five families consisting of 30 variants, viz. 3 (a)-basal, 3 (a)-prismatic, 6 (a)-pyramidal, 12 first order (¢ + a)-
pyramidal and 6 s order (¢ + a)-pyramidal slip systems. The model admits a multiplicative decomposition of the total
deformation gradient F into a component F¢, that accounts for elastic stretching and rigid-body rotation of the crystal
and a component F? associated with incompressible plastic flow, expressed as:

F = F°F? 13)
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The stress—strain relation is written in the elastically deformed reference configuration, in terms of the second Piola—
Kirchhoff stress S and the elastic Green-Lagrange strain tensor E¢ (= 5 (FTF¢ — 1)) as:

S=C*:E° (14)
where C¢ is the anisotropic elasticity tensor. Plastic flow is governed by slip on designated slip systems, given as:
Nslip
L7 =FF ' =) o, (15)

a=1
where L7 is the plastic velocity gradient, y* is the slip-rate on the ath slip system and Ny;,, is the total number of slip
systems. sg ., 1s the Schmid tensor, expressed in terms of the slip direction mg ;;, and slip plane normal ng ;;; , in the
reference configuration, i.e. g, = mg g, @ 0g ;.. The dislocation glide based slip-rate is described using a power
law model in [8,10] as:

sign(t® —s7) (16)

o o
% — 5

"
where y' is a reference slip rate for the cth slip system and m is the power law exponent representing the strain-rate
sensitivity. The resolved shear stress on slip system o is expressed as 7 = F¢7F¢S : s. The athermal shear resistance
5% is due to a stress field between parallel dislocation lines, whereas the thermal shear resistance s¢ is due to local
repelling forest dislocations. An effective resolved shear stress is often defined as 7., = t® — 5. The slip system
resistance evolves as a result of the interaction of mobile dislocations with statistically stored dislocations (SSDs),
geometrically necessary dislocations (GNDs) and grain boundaries. Details of this models are described in [8,43—45].

The crystal plasticity tangent stiffness matrix at a time ¢ in Eq. (8), defined as C' = % , is derived from the
above constitutive model as: '
1
C (Fy@F):C": (F)®F) (17)

- detF|

Here, the 0 subscript indicates that the stiffness operator is calculated in the configuration at = 0 for which C' = C°.
C" has been derived in [3] as:

9S; -1 [0S*
C% = = = (detF?) (FPQF”) " : {
d Ef ) ( - JE
_ _ T _ oF?
+ [S* ®F" — (derF?) 1[I@<SF1’T) + (F”S) ®1]] : 8_E} (18)
with
S* = (detF”)"'F’SF*" (19a)
Nslip -1 Nslip
aS* VA%
= | IRI c* A% — Ay“B* 19b
- X (o )| e D] (190
A=Ce: (FP" @FP") (19¢)
_ _ T _ T _
BY = C° - [FP T@(F” ‘sg) + (FP 1sg) SFP T} (19d)
Nslip .
JoF? aAy“* oS*
- = ORP 19
OE Xa:(so )®(BS* 8E) (19)
The lower and upper tensor product operators & and ® are defined as (A@B)l. = AjxBj; and (A®B)l.j 0= A1 By

respectively. C' is a function of path-dependent state variables, i.e. C' = C' (F', F*', ', .. ) The time-integration
algorithm for incremental update of state variables incorporates a two-step, staggered iterative approach using the
backward Euler time integration scheme, as developed in [8]. Using the major symmetry property, the fourth order
tensor C is written as a6 x 6 matrix for implementation in the finite element equations.
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3. Adaptive solution enhancement for crystal plasticity FEM

The wavelet-enriched adaptive, hierarchical finite element model for elastic problems in [34] is extended to finite
deformation crystal plasticity FE models in this section. The adaptive enhancement is conducted on the initial guess
of the Newton—Raphson algorithm in order to obtain a discretization basis which conforms to the solution of the
linearized problem given in Eq. (9). The change in the tangent stiffness in each increment along with evolving
boundary conditions trigger the adaptive enhancement of the basis functions. The convergence proofs of the method,
given in [34], are also valid for the incremental linearized plasticity solution method. A flowchart of the global
algorithm including the adaptive enhancement method is depicted in Fig. 2.

3.1. Adaptive enhancement of the finite deformation problem

The crystal plasticity formulation for the linearized problem, e.g. in Eq. (9) closely follows the elastic formulation
in [34]. The CPFE solution in the Newton—Raphson algorithm corresponds to the iterative correction u of the
displacement increment Au’ in Eq. (11). In the proposed algorithm, an adaptive enhancement is made to the first
iterate of the solution i.e. Au'=' = u for a time step between ¢ and At. Adaptive enhancement is premised upon
finding the optimal discretization space V" (£2) for u = Au'=! that will reduce the discretization error to within
a prescribed tolerance. The enhanced discretization space that is found for i = 1 is retained for all the subsequent
iterations in the Newton—Raphson algorithm for that time increment.

In an incremental solution process for u, assume that the approximate solution u” at time ¢ has been evaluated on
the discretized space V"(£2) C V(12) as:

menr (1)

u'x) =) uwNX)+ Y whe'x) Vxe (20)
o B

The family {N}™ of m interpolation functions N, corresponds to the interpolated approximation of u in the very
original coarse FE discretization space at the initial time step #y. Hence m corresponds to the number of nodes in
the original coarse mesh of the domain and the set {N}" is a standard finite element basis that follows partition of
unity. The family {¢}"®) corresponds to the set of hierarchical enrichment or interpolation functions at time ¢. The
enriched space augmented with the set of linear hierarchical enrichment functions constitute a hierarchical FEM basis
as introduced in [46]. Hierarchical finite element functions do not necessarily admit partition of unity. Hence, the basis
of hierarchical functions does not constitute an interpolation basis, and enrichment function degrees of freedom are
associated with a displacement correction rather than displacement values. This type of function is useful to preserve
the initial discretization space during the enrichment process.

The adaptive method introduces a set of enrichment functions {¢}"¢” in the hierarchy, which expand the
discretization space V"({2) to an enriched space V"er (£2) > V" (§2), while preserving the original set of discretization
functions {N}". m,,, corresponds to the number of additional enrichment nodes that are hierarchically added to the
initial number m. Assume that the set {¢}" is an arbitrarily large (n — o0) and sufficient set of multi-scale hierarchical
enrichment functions for the coarse discretization space {N}". The functions in the set {¢}" are the standard C°
hierarchical FEM shape functions obtained by uniform subdivision of the coarse mesh. The mesh subdivision method
and specific functions selected have been detailed in [34]. For the increment Ar € t+ — ¢t + At, the adaptive method
finds an optimal set {g}"e *+40 < {$}" such that:

lu— || < e @1
where
m Menr (t+At)
u/lgnr (X) — Z ugenr Not (X) + Z wgenr gl);}-i-At(X) Vx € 7 (22)
o B

An iterative error estimation-solution enrichment algorithm is implemented with iteration steps denoted by k. The
resulting algorithm for a time step from ¢ — ¢+ At has two iterative loops, viz. (i) iterations for the first estimate of u,
in which the enrichment functions {¢}"er +4" are sought, and (ii) the Newton—Raphson iterations for the constitutive
update. This iterative algorithm is summarized in the flowchart 2. The adaptive iterative scheme for an iteration step
(k + 1) to determine {g}"e+40 js presented next.
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o Step 1: Initialize: Calculate uﬁ;’)’" by solving Eq. (9) using the previous discretization space V® =
span{Ny..Nn, ¢}..¢,, .}, such that

Menr(1+A enr
lpgm A0 = {pymer® (23)
e Step 2: Iterate for solution estimate. For iteration step (k + 1):
— Compute the estimate @t
+ Define the basis {¢}” C {¢}" as the next scale of possible hierarchical enrichment functions on which
u is sought
+ Compute an efficient approximate of @ on the basis {N}" U {ga}:','{‘;”" U {¢p}?

. . Menr(t+At)
— Select the new enrichment basis {go}(kﬁH)

Meny (t+At)

* Identify a minimal set {p};%") C {o)

‘;"’(HAT) U {¢}?, such that the projection P(i1) of i on

{N}"U {go};’,ii”ngAt) admits the inequality to within a tolerance ¢, given as:
[P@)—ul <¢ (24)
— Solve for the hierarchically enriched solution uﬁ',fﬂrrl)
* Solve Eq. (9) using the discretization space V(Z(ﬂ)m) = span{Nji..Ny, ¢€+At(k+l)-- ;ﬁé;ﬁg,))}

e Step 3: Stop iteration following the convergence criterion:

; Menr A enr A
E I B S B ) A e 7 i G (25)

3.2. Calculating the estimate in step 2

The solution estimate 1 is evaluated using a modified Jacobi method [47], following steps discussed in [34]. The
discretization of t(x) for evaluating the solution estimate in the enhanced interpolation space is given by:

mAneny (t+At) p
)= > GupNa® + Y qpdp(x) (26)
o B
where
m+meny (t+At) m Menr (t+A1)
Yo b Na® =) B Na®+ Y Wy0y00(X) (27)
o o Y
The increments Ae, e, §y in Eq. (9) can be discretized using Egs. (26) as:
- 1 R N
Ae(n) = 3 (B} + [@(k)]{q})T (B} + [Ow{a}) (28a)
se(@) = ([Bu {8t} + [Ow1{sq}) (28b)
sn(@) = (Byrw){00w)} + [Onrw]{8a}) ® (Byrwl{iw) + [Onrw{a}) (28¢)

where the matrices [B)], [Bnr)] are respectively the linear and nonlinear parts of the strain—displacement matrix
associated with the interpolation functions {N(k)}erme”’(HAt), and [© ] and [ @y ] are the linear and nonlinear
parts of the strain—displacement matrix respectively associated with the enrichment interpolation functions {¢}”. With
this enhancement, the discrete form of Eq. (9) for the linear estimate is written as:

Kyl [C17 {ﬁ(k)} IELE
[[C] [G]“ (@ |~ b (29)
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where

[Kwl = /Q[B(k)]T[(CI][B(k)] + [Byrw) [0 1[Byrwyld 2 (30)
[G] = /Q[@(k)]T[(Cr][@(k)] + [Onrw] [0 [ OnLw]d 2
[C]= /;Z[Q(k)]T[Ct][B(k)] + [QNL(k)]T[G'][BNL(k)]dQ
b7} = | (917 (Bd2+ | (¢ (t}d] — f (O] {o'}d2 and
2 Iy 0
{p"} = / [INwl" (f1d2 + | [Nwl" {t}dl — / Bwl” {o'}d0
2 I'r n
Here [K)] is the 3(m + m.,,, (t + At)) x 3(m + m,,, (t + At)) stiffness matrix and {b(k)} isa3(m +me, (t + At)) x 1
load vector. [G] is a symmetric 3p x 3p matrix and [C] is a 3p x 3(m + m,,, (t + At)) matrix.

The solution uil,f)’" (x) of the previous iteration problem may be used to generate an efficient estimate of the
coefficients lig(), i.e.

m—+menr
3 h nr henr henr
o) 2 U, ,  where ug” (%) = Z W, Nor)(X) 31)
o
From the coefficients quZ;, approximate values of qg are extracted as:
q 3(m+menr) henr
(bj — 2 Cf”Aun(k)> )
q; ~ no sum on j (32)
Gjj

where j and k are matrix indexes ranging from 1 to 3p and 1 to 3(m + m,,, ), respectively.

3.3. Wavelets as optimal enrichment basis functions

This section explores the use of wavelet functions for providing an optimal basis of hierarchical enrichment
functions that conform to the profile of the estimate u in Eq. (24). As for linear problems in [34], the second generation
wavelet functions [35] are used for nonlinear problems. The following properties of wavelet functions render them
ideal for multi-scale enrichment [34].

e Compact support: Wavelet functions have compact support on each subdomain of {2. Solutions interpolated on
wavelet function bases do not exhibit spurious instabilities such as the Gibbs phenomena.

o Multi-resolution: Wavelet bases have multi-resolution characteristics, which evaluate the differences between
hierarchical scales. This implies that wavelet functions with negligible coefficients indicate that higher scale
enrichment is not necessary.

o Compatibility with FE discretization: Second-generation wavelets functions [35,37] can be constructed from
any irregular hierarchical FE mesh. Errors due to nonconformity are therefore avoided in wavelet-enriched
discretization spaces.

The following criteria are followed to generate the wavelet enrichment function as detailed in [34].

e Riesz basis: Wavelet functions with the Riesz basis property avoid aliasing by ensuring completeness of each
scale of wavelet functions.

e Vanishing moments: The integral of wavelet functions over any domain is zero, so that a small coefficient has
negligible contribution.

e Hierarchical characteristics: The wavelet family is constructed from the coarse FEM mesh.
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Fig. 1. Generating wavelet bases with the lifting scheme in a 1D hierarchical finite element mesh.

Second generation wavelets e.g. in [35,37] are found to conform to these criteria.
The procedure to create a wavelet from hierarchical finite element shape function employs the lifting scheme [35].
First, a “lazy ” wavelet @2‘1 is created from a hierarchical shape functions as:

Py (%) = agy(x) (33)

where « is a constant and [/ denotes the hierarchical scale. Second, this wavelet is transformed through the lifting
scheme, in which vanishing moments are added, and each scale of wavelets becomes a Riesz basis of the domain {2:

R
o5 ') =g %) = Y aN (%) (34)

A

where the function N i_' is a standard finite element shape function at scale / — 1. The coefficient a; is chosen such
that:

/Q ¢ 0d2 =0 VB e[l p()] (35)

Adding the functions N i_l extends the compact support of the wavelet function wllg_l to the whole domain, i.e.

p0)
Usuppog™h = 2 (36)
B

The lifting scheme with R = 2 is sufficient to obtain all the properties mentioned above. The lifting scheme for a 1D
domain is shown in Fig. 1 with R = 2, « = 2 and a, = 0.5. The support of <p? extends to x € [—1.5, 1.5] while (,5? is
non-zero for x € [—0.5, 0.5]. Furthermore, f_llss cp?(x)dx =0.

The estimate t(x) is projected on a wavelet basis of / scales constructed upon the coarse finite element discretization
space:

L p()

W00 =) eNa®+ ) D dj gy () (37)
o i B

where {¢/}P") is a family of p(j) wavelet function at scale j. The coefficients ¢ and d’ are obtained by the fast wavelet
transform method [34,37]. Using the multi-resolution property, wavelets with negligible coefficients can be omitted

Please cite this article in press as: Y. Azdoud, et al., Wavelet-enriched adaptive crystal plasticity finite element model for polycrystalline microstructures, Comput. Methods Appl.
Mech. Engrg. (2017), http://dx.doi.org/10.1016/j.cma.2017.08.026.




10 Y. Azdoud et al. / Comput. Methods Appl. Mech. Engrg. 1 (1111) IIR-1N1

tart Solve Estimate Find e
k= ? _tlz 0 71 Kwuw =b u — {etw

Stop
criterion?

k=k+1 No

Find ;
t
Li=i+1
ct of : |
t=t+At Solve ‘
k=0i=1 Kiu=birac — Ry
No l
t> Tfinal Aui _ Aui—l +u
NS
Iterative solver loop
End

Fig. 2. Algorithm for wavelet-enriched adaptive crystal plasticity FE model.

with negligible interpolation error. With a tolerance of € in Eq. (37), it yields

()
i (x) - P<u><x><Z Y (38)
I opia) <
with
r(j)
P(i')(x) = anN <x>+Z DI VA €)) (39)

Iop1a) e

The error that is caused by this projection is given as:

I1#'(x) — P@' x)|? < Ca[¢)? (40)

An upper bound for C; is given as C, < le C/ p(j), where p(j) is the number of wavelet bases that are omitted at
scale j and C/ is the Riesz upper bound of the wavelet basis at scale j.
The wavelets are constructed from hierarchical shape functions. Therefore, Eq. (39) is rewritten as:

menr(J)

P(@)(x) = Ze N°(x>+Z Z £ 95 (x) (41)

with €’ and fg expressed as functions of ¢ and d. These coefficients are not important for the method, and only the set

of enrichment functions is sought. Eq. (41) provides a set of m,,, = Zl].men,( J) enrichment functions d)é(x). This set
is used as the next scale of enrichment function such that:

l
(@}t = U{¢j}menr(j) (42)
J
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3.4. Issues in numerical implementation

The overall algorithm and steps in numerical implementation are depicted in Fig. 2. A few important issues are
discussed next.

3.4.1. Overcoming volumetric locking

Polycrystalline microstructures are typically modeled using the constant strain, 4-noded tetrahedral or TET4
elements. These elements are known to have volumetric locking due to plastic incompressibility. In hierarchical
elements, locking persists primarily due to the kinematic constraints coming from the nested mesh. The F-bar patch
method developed in [48] is implemented in the present enhancement scheme. In this method, the deformation gradient
admits a multiplicative decomposition into isochoric and volumetric parts as: F = F;,,F,,. The volumetric part is
regularized over a patch of elements using the ratio of the deformed to undeformed volumes. The main difference of
the present model from the standard FE implementation of the F-bar patch method lies in the selection of the F-bar
patch. In hierarchical FE construct, each child element is obtained by subdividing a parent element. Thus the natural
choice for a patch on which the volumetric part of the deformation tensor is calculated, is the union of all the children
belonging to a parent element. In the formulation for adapted TET4 elements, the stabilized deformation tensor F is
given as:

det(Fparent)
det(F)

where det(F pyren) is the relative average volume change of all children belonging to a parent element. Details of this

formulation are provided in [48]. Examples showing the effect of the F-bar patch stabilization are given in Section 4.1.

— 1
F = Fiso(Fparent)vol = { }jF (43)

3.4.2. Projection of internal variables on the new mesh

An important consideration with adaptive methods for nonlinear history dependent problems is the projection of
internal variables from the old mesh to the new mesh. The internal variables and tangent stiffness parameters for the
added enrichment functions are a priori not known. It is important to project these variables on the new mesh with
additional degrees of freedom.

The values of the tangent stiffness C’, Cauchy stress o’ and other internal variables at time ¢ in the constitutive
model and Eq. (30) are known on the discretization space of the previous increment. This is at a coarser resolution
than the one for which u(x) will be estimated. For a discretized space, represented in part by linear interpolation
functions, the internal variables calculated at Gauss points are represented on the space of the derivatives. These terms
are in part constant in the element and discontinuous at the element boundaries [, and hence are known for all x in
£2|r,. The new discretization space is constructed by a conforming mesh subdivision. The internal variables in the
new discretization space are directly projected from their respective values in the old discretization space at relevant
Gauss points, as shown with a two dimension example in Fig. 3. This approach is justified through integration in the
reference configuration, where the finer elements constitute a complete subdivision of their parent elements. Higher
order interpolation methods can be used to obtain the internal variables associated with new elements, which may
lead to higher convergence rate of the non-linear algorithm. However, the choice of a uniform projection enforces the
conservation of the internal variables based on the previous equilibrium conditions without any ad-hoc correction, and
this is therefore a conservative choice.

These projected variables are subsequently used for nonlinear constitutive updates. The direct projection of
variables from the coarse to fine mesh can result in a perturbation of the evolution of these variables when compared
to a fixed mesh. However, the error in internal variables is contained in the adaptive enhancement method, by selecting
the discretization space that conforms to the solution profile within a prescribed tolerance. This scheme is validated
in the numerical examples of Section 4, where L, norm of the stress is shown to converge to the reference solution
calculated with fixed mesh.

4. Numerical examples for crystal plasticity finite element modeling

This section evaluates the performance of the wavelet-enriched adaptive FE model for two crystal plasticity
problems. The results produced by the adaptive method are compared with those from a highly refined hierarchical
finite element model, termed as the reference solution u/. The first problem represents a bi-crystal model under
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Fig. 3. Projecting stress and tangent stiffnesses to adapted subdivided (child) elements from parent elements.

uniform displacement. The effect of volumetric locking mitigation is tested. Results obtained with the hierarchical
finite element method is compared to the standard finite element method for this problem. The effect of creep under
varying traction is studied in the second example, where a small inclusion in inserted in a crystalline matrix. For these
two examples, two different configurations are tested, viz.

1. Uniformly refined mesh from the coarse mesh, using hierarchical finite elements (reference solution).
2. Adaptive wavelet enrichment with an iterative solution estimate o in Eq. (26).

The parallel codes are run on 48 processors on a high performance computing platform at [49].
Convergence studies for these examples are expressed using the errors in stresses and displacements, calculated
using the L, norm on each domain 2. The percentage error of stress is estimated as:
,, o' — ol
. lo /)12

le" @I = / RUCRUSTE

x 100(%) with (44)

where o/ is the reference stress solution and o is the adapted stress solution. Similarly the percentage error of
displacement is estimated as:

o = lu"(x) — u/ )|
" lluf (x)]?

"GP = / W) - u (0)d 0
xef?

x 100(%), with (45)

4.1. A bi-crystal model

In this study, a bi-crystalline rectangular bar of dimensions 1 pmx 1 umx2 pm is subjected to uniaxial displacement
conditions. The loading is applied uniformly on the side surface (y = 1 um) over 100 s, with a ramp of displacement
from u, = 0 to u, = 1.2 x 1072 um. The opposite surface (y = 0) is constrained such that u, = 0. The simulation is
divided into 10 increments of 10 s each. The material is assumed to be the titanium alloy Ti6242 that has a hexagonal
close-packed or hcp lattice structure. The (c)-axis of the lattice system is aligned with the z-axis for the bottom grain
(z < 1), corresponding to Euler angles {0, 0, 0} in the ZXZ convention. For the top grain (z > 1), the {(c)-axis of the
lattice system is aligned with the y axis {0, 5, 0}.

The elastic stiffness and crystal plasticity parameters have been calibrated in [43—45] and are summarized in
Table 1.

The initial coarse mesh consists of N, = 640 4-noded TET4 elements with N, = 205 nodes as shown in Fig. 4(a).
The reference finite element solution u/ is obtained from hierarchical FE analysis on a uniformly refined mesh with
N, = 327,680 and N, = 59,873. The adaptive enrichment for this example is run with 3 scales of hierarchical
enrichment functions with N, = 327,680 and N, = 59,873 for the finest scale.
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Table 1
Crystal plasticity constitutive parameters for the slip and twin systems.
Cu Ciz Ci3 C33 Css
170 GPa 98 GPa 86 GPa 204 GPa 51 GPa
m r n q"‘ﬂ
0.015 0.1 0.01 1.0
()}O)ba:—(a) (]}O)pri—(a) ()}O)pyr—(a) (yo)pyr_(c_'_a)lst (]}O)ir_ﬁ_(c_'_a)
0.007 0.049 0.003 0.003 0.003
(55 0)bas—(a) (55 0)pri—(a) (55 0)pyr—ta) (SZ,O):JS)'tr(L‘+a) (S:,O)?;(i—(c+a)
284 MPa 282.2 MPa 395 MPa 625 MPa 625 MPa
(Siiwt Jbas—{a) (sg,sut),”’i%ﬂ) (sg.sat)py’*(fﬂ (Sg,sat );sztr—(c+a) (Si(,sat);’;i{—(c+a)
450 MPa 550.0 MPa 550.0 MPa 1650 MPa 1650 MPa
(SZ’())all—systems (h:o)all—systems> (hg,o)all—systems
0 MPa 100 MPa 0 MPa
1 &) c3 x“f Oslip
0.1 2.0 1.0 1.0 1.6 x 10717

(a).

Fig. 4. (a) Initial coarse mesh and boundary conditions, and (b) position of 2028 nodes for wavelet enrichment functions on the coarse mesh.

Results of simulations with the wavelet adapted FE method are compared with those by the uniformly refined
hierarchical FE model at the end of the loading. The nodal positions of the 2028 wavelet enrichment functions for a
tolerance of € = 0.006 are shown in Fig. 4(b). The enrichment nodes are concentrated at the grain boundary, where
the displacement error in the coarse finite element model is large. Fig. 5 shows the percentage error norm in the

incipal st t timated ]
principal stress component oy, estimated as €gyy = W

DoFs, and (b) the wavelet adapted solution mesh with 17555 DoFs. The uniformly refined mesh simulations require
a total time of 591 s, while the wavelet adapted model takes a total of 625 s on the same CPU platform. The errors are
e,r = 1.30-107% and e, = 3.76- 10~ for the uniformly refined model, and e, s = 5.36-1073 and ¢,y = 8.20- 107>
for the adaptive model. The adaptive model is marginally slower than the uniformly refined model but with a smaller
number of DoFs. However the local and global errors are significantly reduced with an error about two times smaller
in the stress and four times smaller in the displacement. To achieve the same error reduction with a uniform mesh,
the mesh density should be quadrupled using the measured convergence rates shown in Figs. 6a and 6b. This would
amplify the computational cost by a factor of 5 for this example, using the CPU time evolution in Fig. 7(a). If the
post-processing time and initiation time is ignored, the improvement in solving time using the adaptive method is
about 18 times faster for this example with a fixed error tolerance in stresses and displacements.

The convergence in stress and displacement errors at the last time increment of the wavelet-enriched adaptive
model are compared with the uniformly refined hierarchical FEM solutions in Figs. 6a and 6b. The convergence rates
are calculated using displacement and stress errors in Eqs. (44) and (45). The adaptive method converges faster than

x 100% for (a) a uniformly refined mesh using 24,531
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Fig. 5. Contour plots of the stress field error es,, (%) for simulations with: (a) the uniformly refined mesh with 24,531 DoFs, and (b) the wavelet
adapted model using 17,355 enrichment DoFs.
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Fig. 6. (a) Convergence rates on a log—log plot of the displacement error ¢, in Eq. (45) as a function of degrees of freedom, (b) Convergence rates
on a log—log plot of the stress error e, s in Eq. (44) as a function of degrees of freedom.

the uniformly refined hierarchical FEM simulations. Specifically, the convergence rate for the adaptive method is
~ O(N~'3*) in the displacement norm and ~ O(N —0.816) in the stress norm. The uniformly refined hierarchical FE
method has a slower convergence rate of ~ O(N %) for the displacement norm and ~ O(N~%") for the stress
norm. The theoretical limit obtained in elasticity for linear discretization functions is O(N~2) for the L, norm of
displacement and O(N ') for the L, norm of stress. Even in the plasticity framework, the adaptive model significantly
improves convergence rates closer to the elastic theoretical limit.

Next, in order to accelerate the simulations, only a single adaptive iteration is taken for each increment. The
evolution of the number of nodes at the end of each time increment is displayed in Fig. 7(b). The number of nodes
stabilizes during the elastic part of the loading (f < 60 s) where the problem is principally elastic. In the second
part of the loading (60 s > ¢ < 100 s), plastic deformation dominates, which requires additional nodes. The total
computational times for the uniformly refined and the adaptive enrichment model are depicted in Fig. 7(a). The
computational cost for both cases remains close to fixed when the DoF’s are low due to initiation and post processing
costs. Furthermore it increases for larger mesh sizes, when the direct solver cost becomes dominant. The asymptotic
CPU time is displayed by the dashed line corresponding to a complexity of O(N?). The adaptive method is more
computationally costly than the uniformly refined hierarchical FE model for coarse mesh problems, but is similar
for larger problems. However, because of its better convergence rate, the adaptive method outperforms the uniformly
refined model in terms of the error for a given mesh density.

Fig. 8 compares the uniformly enriched hierarchical FE and the standard FE models for 24,531 Dofs. The stress
component oy, of the standard FEM is displayed in 8(a). The local error e, , which measures the relative difference
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Fig. 7. (a) Total CPU time evolution with the number of degrees of freedom, and (b) evolution of the number of degrees of freedom during 100 s

of simulation.
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Fig. 8. (a) Stress component oy, by the standard FE model for 24,531 Dofs, and (b) local error €y, which measures the relative difference between
the solution of hierarchical and standard FEM.

between hierarchical and standard FE models is displayed in Fig. 8(b). Both results are displayed without volumetric
locking control, as the methods for mitigating locking may change the result slightly. The result for both methods is
similar with €5, < 0.5% and within the precision of the non-linear algorithm. The effect of the F-bar patching for
the current example is next tested in Fig. 9. The hierarchical FE model with the F-bar patch stabilization is shown
in Fig. 9(a) for 24,531 Dofs. The effect of the F-bar method is significant, as exemplified by the local error e, in
Fig. 9(b). This measures the relative difference between the solutions with and without F-bar stabilization. The F-bar

method controls and mitigates the effect of volumetric locking for the hierarchical FEM.

4.2. Crystalline matrix with a cubic inclusion
In this example, a cubic material domain of dimensions 30 um x 30 um x 30 wm containing a cubic inclusion of
dimensions 10 pum x 10 pm x 10 um is modeled under uniaxial traction conditions. The inclusion is located at the
bottom corner (x = y = 30, z = 0) as shown in Fig. 10(a). The matrix is oriented at Euler angles {0, 0, 0} in the
ZXZ convention, while the inclusion is oriented at Euler angles {0, 7, £} . The loading is applied uniformly on the
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(a). (b).

Fig. 9. (a) Stress component oy, by the hierarchical FE model for 24,531 Dofs with F-bar stabilization, and (b) local error €oyys which measures
the relative difference between the solutions with and without F-bar stabilization.

(a).

Fig. 10. (a) Boundary conditions and (b) position of 992 nodes for the wavelet enrichment functions on the coarse mesh.

top surface (z = 30 wm) for 300 s, with the first 225 s as a ramp from f = O mN to f = 533 mN. The load is held
at constant f = 533 mN for the remaining 75 s. The bottom surface (z = 0 um) is constrained with a displacement
u, = 0. The simulation proceeds in 30 secs increments for 10 increments. The material model is identical to that for
the bi-crystal problem.

The initial coarse mesh of N, = 162 4-noded TET4 elements with N, = 64 nodes is shown in Fig. 10(a). The
reference finite element solution u/ corresponds to the hierarchical FE analysis on a uniformly refined mesh with
N, = 663,552 and N, = 117,649. The adaptive enrichment is run with 4 scales of hierarchical enrichment functions
with N, = 663,552 and N,, = 117,649 for the finest scale. Results of simulations by the adaptive wavelet-enriched and
uniformly refined hierarchical FE models are compared at the end of the loading. Nodal positions of 992 enrichment
functions for € = 0.0005 are shown in Fig. 4(b). Enrichment nodes are concentrated at the inclusion boundary, where
the displacement error in the coarse finite element model is large.

Fig. 11 shows the percentage error norm in the principal stress component e, = o “ ol x 100% for (a) a

uniformly refined mesh with 46,875 DoFs, and (b) the wavelet adapted solution with 34, 935m DoFs. The uniformly
refined solution is simulated for a total time of 3015 % 400 s while the adaptive solution is simulated for 2522 4+ 400
s on the same CPU system [49]. Variability in the computational times is largely due to parallelism overhead and
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b

Fig. 11. Contour plots of stress field error e,_ (%) for simulations with: (a) the uniformly refined mesh with 46,875 DoFs, and (b) the wavelet
adapted model using 34,935 enrichment DoFs.
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Fig. 12. Convergence rates on a log—log plot of the stress error e, r in Eq. (44) as a function of degrees of freedom.

hardware allocation variation on the computation cluster at [49]. The errors are respectively e, s = 4.5 - 107> for the
uniformly refined model and e, ; = 3.16 - 10~ for the adaptive model.

The convergence rates with respect to stress error, calculated using Eqs. (44), at the last time increment of the
wavelet-enriched adaptive method is compared with that of the uniformly refined hierarchical FEM solutions in
Fig. 12. The adaptive method converges faster than the uniformly refined hierarchical FEM simulations. Specifically,
the convergence rate for the adaptive method is ~ O(N ~%7%) for the stress norm whereas it is ~ O(N~%36%) for the
uniformly refined model.

The evolution of the number of nodes at the end of each time increment is depicted in Fig. 13. According to the
loading profile, the last three increments of the simulation are subjected to a constant load. Using just the elastic
estimate in Section 3 is not sufficient to account for creep in the material as shown in Fig. 13(a), since the estimate
predicted for a constant force is negligible. To account for creep, a single step of the quasi-Newton iteration is
performed. The residual from this step integrates the effect of creep and modifies the estimate calculation in Eq. (32).
The number of enrichments may evolve during the last three steps, as shown in 13(b).

The total computation time for the uniformly refined and adaptively enriched models is shown in Fig. 14. The
number of adaptive nodes evolves during the loading increments, which saves computation time in comparison with a
fixed mesh method. The simulations are conducted multiple times with variations of 400 s. The computation cost for
both cases remains close to constant for the coarse problems, due to initiation and post processing cost and increases
for larger mesh sizes. The CPU time increase is far from the theoretical estimate of O(N?), which may be reached for
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Fig. 13. Evolution of the number of degrees of freedom during the 300 s simulation for (a) the standard estimate A#, and (b) the estimate Au
calculated after one step of the quasi-Newton algorithm.
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Fig. 14. Total CPU time evolution as a function of the number of degrees of freedom.

a lower number of processors and for larger problems. While the CPU times are similar, the superior convergence rate
of the adaptive model results in a lower computational cost for a given error reduction.

4.3. A polycrystalline microstructural model simulation

A polycrystalline microstructure of the icp Ti6242 alloy, containing 208 grains as shown in Fig. 15(a), is simulated
under uniaxial displacement conditions. The computational microstructure has dimensions of 124 um x 124 pm x
124 um. The loading is applied uniformly on the top surface (z = 124 um) with a displacement ramp from u#, = 0 to
u, = 3 um, while the surface (z = 0) is constrained with u, = u, = u, = 0. The 600 s simulation is conducted in
30 increments of 20 s each. The grain misorientation distribution with respect to the z-axis is illustrated in Fig. 15(a).
Material parameters are the same as in the previous examples. The initial coarse mesh has N, = 14,225 TET4 elements
with N, = 1867 nodes. The reference solution u/ is obtained from a uniformly refined mesh with N, = 649,984
and N, = 111,041. The adaptive enrichment is run with 2 scales of hierarchical enrichment functions, with the finest
scale represented by N, = 649,984 and N,, = 111,041.
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Fig. 15. (a) The initial coarse mesh and boundary conditions, and (b) position of 2368 nodes including 501 wavelet enrichment functions in the
polycrystalline model.
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Fig. 16. Contour plots of the displacement field error e, (%) for simulations with: (a) the coarse mesh model with 5601 DoFs, and (b) the wavelet
adapted model using 7104 enrichment DoFs.

Nodal positions of the 501 enrichment functions at the end of the loading for a tolerance € = 0.00017 are shown
in Fig. 15(b). Enrichment nodes concentrate around grain boundaries. Fig. 16 shows the percentage error norm in the
principal stress o, for (a) the coarse starting mesh using 5601 DoFs, and (b) the wavelet adapted solution with 7104
DoFs. Error values are e, = 2.02 - 107! and e,; = 7.87 - 1073 for the coarse mesh and e¢,; = 1.63 - 10~! and
e,r = 3.70 - 1073 for the adaptive model. While the adaptive method uses slightly more nodes, the error reduction
is significant. The solution is computationally more expensive however, with 2249 secs for the coarse mesh model
and 3932 secs for the adapted model. The computation time advantage is however recovered for larger problems, as
shown in Fig. 18(a).

Convergence rates at the last time increment of the wavelet enriched adaptive method are compared with that for
the uniformly refined hierarchical FEM solutions in Figs. 17a and 17b. The convergence rates are calculated from
displacement and stress errors using Eqs. (44) and (45). The adaptive method converges faster than the uniformly
refined hierarchical FEM simulations. For the adaptive method the convergence rate is ~ O(N~!%) for the
displacement norm and ~ O(N ~%86) for the stress norm. The uniformly refined hierarchical FEM method has a
slower convergence rate of ~ O(N~!!7) for the displacement norm and ~ O(N~%733) for the stress norm. Larger
number of wavelet enrichment scales can significantly improve the convergence results with a focus near the grain
boundaries. This would be computational intractable for the hierarchical model with uniform mesh with ~ 41 million
elements for four scales.

The simulation is accelerated with a single adaptive iteration per increment, in which adaptation is triggered only
when the variation in tangent stiffness is higher than 2%. As a result, enrichment starts only when the plastic behavior
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Fig. 17. Convergence rates on a log-log plot of (a) the displacement error e, s in Eq. (45), and (b) the stress error e ¢ in Eq. (44) as a function of
degrees of freedom.
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Fig. 18. (a) Total CPU time evolution with the number of degrees of freedom, and (b) evolution of the number of degrees of freedom in the 600 s
of the simulation.

is dominant. The evolution of the number of nodes at the end of each time increment is displayed in Fig. 18(b). The
number of nodes starts uniformly small in the elastic part of the loading (+ < 140 s). In the second part of loading
(120 s > ¢t < 360 s), dominant plastic deformation requires additional nodes. In the rest of the simulation (¢ > 360 s)
the number of nodes stabilizes despite the fact that the tangent matrix changes more than 2% between increments.
This is because the critical plastic transition has been achieved and hardening dominates. The total computation times
for the uniformly refined mesh and the adaptive enrichment method are given in Fig. 18(a). The adaptive method is
computationally more costly than the standard FE method for coarse mesh problems but the cost decreases with larger
meshes.

5. Conclusions and summary

This work extends the wavelet-enriched adaptive finite element method developed in [34] to large deformation
crystal plasticity modeling of polycrystalline microstructures. It is motivated by the need to efficiently simulate
image-based polycrystalline microstructures of metals and alloys for deformation and failure. The enrichment strategy
involves projecting the solution field onto a set of scaling and multi-resolution wavelet basis functions. The wavelet
functions augment the solution by estimating residuals at higher scales. The multi-resolution wavelet property is
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advantageous for the selection of an optimal set of functions that can adaptively enrich the solution space with a
prescribed level of accuracy. The proposed adaptive wavelet enrichment method introduces a discretization space
which conforms to the profile of the solution. An iterative algorithm efficiently calculates an estimate of the solution
from the previous iterate using a modified Jacobi method. The estimate is decomposed onto a truncated wavelet
interpolation basis, which is then used to form a new solution space. The nonlinear crystal plasticity finite element
scheme is modified to base adaptations on the initial solution estimate that depends on the evolution of the elasto-
plastic tangent stiffness. The adaptive model also implements a F-bar method for stabilizing TET4 elements by
mitigating volumetric locking induced by plastic incompressibility.

The adaptive wavelet-enriched FE method is subjected to multiple validation tests for the hcp alloy Ti6242, with
special focus on the convergence-rate, error reduction and computational cost. Solutions by the adaptive method are
compared with reference solutions from fine-scale FE simulations, conducted on a uniform mesh for three examples.
The adaptive method, for which enrichment functions are added at regions of high error, converges faster than the
uniformly refined FEM. In the first example of a bi-crystal microstructure with Dirichlet boundary conditions, the
adaptive method outperforms the uniformly refined hierarchical FEM in both computation time and convergence rate
for large meshes. Furthermore, the hierarchical FEM method is shown to have comparable results to the standard
CPFEM. The second example solves a composite crystalline domain with an inclusion subjected to Neumann
boundary conditions. The adaptive method is shown to have superior convergence rate and computational cost. A
modification of the computational estimate is suggested to account for creep. The third example studies the results
of simulation of a polycrystalline microstructure under Dirichlet boundary conditions. It is shown to exhibit similar
characteristics as for the first two examples. In conclusion, the proposed adaptive wavelet enrichment method has
robust advantages when used in crystal plasticity by reducing computational cost to achieve advantageous convergence
rates and error reduction. This method is expected to be highly efficient for problems with localization leading to crack
initiation and propagation.
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