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Abstract

In this paper. a multiple scale finite element model (VCFEM-HOMO) has been developed for elastic-plastic
analysis of heterogeneous (porous and composite) materials by combining asymptotic homogenization theory with
the Voronoi Cell finite element model (VCFEM). VCFEM for microstructural modeling originates from Dirichlet
tessellation of representative material elements at sampling points in the structure. Structural modeling is done by the
general purpose finite element code ABAQUS, and interfacing with the microscale VCFEM analysis is done through
the user subroutine in ABAQUS for material constitutive relation, UMAT. Asymptotic homogenization in UMAT
generates macroscopic material parameters for ABAQUS. Following the macroscopic analysis, a local VCFEM
analysis is invoked to depict the true evolution of microstructural state variables. Various numerical examples
are executed for validating the effectiveness of VCFEM-HOMO, and the effect of size, shape and distribution of
heterogeneities on local and global response is examined.

1. Introduction

The last three decades have experienced a surge in the advancement of science and technology for
heterogeneous materials that contain dispersions of multiple phases in the microstructure. Examples are
metal/alloy systems with second phase in the form of precipitates and pores, and composite materials
containing a dispersion of fibers, whiskers or particulates in the matrix. In alloy systems, precipitates
and pores are results of conventional processing routes. In reinforced composites, stiff, strong and brittle
second phase inclusions, e.g. silicon carbide, boron or aluminum oxide, etc. are added to titanium, nickel
or aluminum matrices to enhance flow strength, creep resistance and wear resistance of structures. These
functionally superior materials have found increasing utilization in the acrospace, automotive, materials
and ordnance industries for replacing some of the traditionally used structural materials. The degree of
mechanical and thermal property enhancements depends on the size, shape and properties of the second
phase, as well as on their spatial distribution within the matrix. For example. ductility is reduced with
increasing volume fraction of reinforcements in metal-matrix composites. Christman et. al. [1] have shown
that local plastic flow is highly sensitive to shape of the reinforcements under identical global stresses.
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It is clear that rigorous fundamental studies are warranted for understanding deformation and failure
mechanisms prior to design of advanced materials in high performance applications. Studies reflecting
the details of actual heterogeneous microstructures are indispensable in this respect. It is through these
models, that the effect of second phase shapes, sizes and distributions on evolving state variables like
stresses, plastic strains, void initiation and growth, and evolving material variables like strain hardening
and flow stress can be investigated.

A number of analytical micromechanical models for predicting macroscopic response have evolved
within the framework of small deformation linear elasticity theory. Notable among them are models
based on: (i) variational approach using extremum principles [2, 3], (ii) probabilistic approach [4], (iii)
self-consistent schemes [5, 6] and (iv) the generalized self consistent model [7, 3]. These models follow
the idea of equivalent inclusion methods based on eigenstrain formulation. Though analytical micro-
mechanical models are reasonably effective in predicting equivalent material properties for relatively
simple geometries and low volume fractions, they are often incapable in depicting the evolution of stresses
and strains in the microstructure. Arbitrary microstructural morphology, that are frequently encountered
in actual materials cannot be deterministically treated with these models. Constitutive response of the
constituent phases are also somewhat restricted and predictions with large property mismatches are not
very reliable. Additionally, due to lack of proper representation of microscopic stresses and strains, they
cannot capture the effect of local inhomogeneities on damage and failure. The state of the art in analytical
modeling for ductile materials is not as mature. Important contributions have been made by Tandon and
Weng {8] for small strain, deformation theory of elasto-plasticity of metals with elastic particles, and by
Dvorak and Bahei-El-Din [9, 10] for rate-independent plastic matrix and elastic fibers using a ‘vanishing
fiber diameter’ model, and more recently, the bimodal plasticity theory. Paley and Aboudi [11] have
developed a semi-analytical generalized method of cells for elastic-plastic and viscoplastic materials,
while Nemat-Nasser and coworkers [12] have used Fourier series expansions to develop elastic-plastic
and creep models. The applications of these non-linear models to complex microstructures in many real
materials are even less effective than the linear models. This is substantiated by the fact that when plastic
flow occurs, the deformation is no longer homogeneous. Local properties become stress dependent and
the overall constitutive response is influenced by the distributions and shapes of second phase.

Intractability of analytical models in situations of arbitrary phase dispersions have necessitated the
introduction of Unit Cell formulations [1, 13, 14] using computational methods. These models generate
overall material response through detailed discretization of a representative volume element (RVE) of
the composite microstructure. In unit cell models, global properties are ascertained by assuming macro-
scopic periodicity conditions on the RVEs. Despite their widespread success, the unit cell models are
faced with some shortcomings in modeling real materials, stemming from global and local periodicity
assumptions. Global periodicity assumes that the same RVE is valid for all points of a structure, which
is not realistic for many commercial materials. A majority of these models also make assumptions of
‘perfect’ local periodicity and uniform distribution of the second phase. Effectively, this local periodicity
assumption can reduce the representative volume element (RVE) to a basic structural element (BSE),
thereby making the unit cells very simple. A basic structural element is defined as the smallest element
of the microstructure reflecting basic geometrical features (see Fig. 1(c)). Micrographs of many real ma-
terials often show arbitrariness in distribution (Fig. 1(b)) thereby making this assumption too restrictive.
Another limitation is that unit cell models typically formulate constitutive relations based on a single
RVE subjected to a given load history. This makes them amenable to misrepresentation of the actual
interaction between macro- and micro-scale deformations. This calls for simultaneous computations at
multiple levels for concurrent evolution of macroscopic and microscopic variables.

In the 1970s a mathematical theory called Asymptotic Homogenization Theory [15, 16], originated for
analyzing physical systems containing two or more length scales. It is suitable for multi-phase materials
in which the natural scales are the microscopic scale characterized by inter-heterogeneity/local disconti-
nuity spacing and the macroscopic scale characterizing overall dimensions of the structure. This method
is based on asymptotic expansions of displacement and stress fields about their respective macroscopic
values and uses variational principles for creating a link between scales. Resulting boundary value prob-
lems at the macroscopic and microscopic levels are solved by invoking numerical methods at both levels.
Fig. 1 shows the various levels in a structure and its corresponding computational model. Computer
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Fig. 1. A heterogeneous structure with various levels. (a) The global structure and the computational geometry; (b) representative
material elements (RME) at a point and the corresponding VCFE model; (c) a basic structural element represented by a Voronoi
Cell.
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simulations simultaneously provide global response through homogenized material parameters and av-
eraged stress/strain fields, and microstructural behavior through a depiction of local stress/strain fields.
This method can overcome shortcomings inflicted by global periodicity restrictions in unit cell models.
The analysis however, makes the assumption of local periodicity through the introduction of spatially
repeated microscopic cells.

The finite element method has been successfully applied in conjunction with the homogenization the-
ory for analysis of linear elastic, particulate and fiber reinforced composites by Toledano and Murakami
[17] and by Guedes and Kikuchi [18, 23]. These models are constructed by considering very simple unit
cells that represent uniform distributions in the microstructure. For non-linear regimes, homogenization
theories have been established by Suquet [19]. Important contributions to the application of homoge-
nization method in finite deformation elasto-plasticity has been made by Guedes [20] and Cheng [21].
The method has been extended to model damage evolution by fiber rupture for linear elastic materials
in [25]. A comprehensive review of this method for various problems is presented in [22]. In spite of its
promise, the homogenization theory has not enjoyed a wide acceptance thus far. A prime reason is the
assumptions of over-simplified microscopic RVEs for reducing enormous computing costs.

The material based Voronoi Cell Finite Element Model (VCFEM) [26-30], developed by Ghosh and
coworkers, attempts to overcome difficulties in modeling arbitrary microstructures by conventional finite
element methods. The VCFEM mesh evolves naturally from a heterogeneous microstructural material
element (RME) by Dirichlet tessellation into a network of multi-sided ‘Voronoi’ polygons. The polygons
contain one second phase inclusion each, at most as shown in Fig. 1(b). A robust mesh generator to
create these polygons based on shape, size and location of the heterogeneities is developed in [30]. The
multi-phase Voronoi polygons, identified with the basic structural elements as depicted in Fig. (1c), con-
stitute elements in VCFEM. Element formulations have been developed for micropolar thermo-elasticity
problems in [29], and for elastic-plastic problems in [26, 27]. VCFEM with asymptotic homogenization
for elastic problems have been presented in [28].

This paper presents a coupled muitiple scale computational model for heterogeneous elastic-plastic
structures. Only two-dimensional problems are considered. Microstructural analysis for various differ-
ent representative material element arrangements, is done with the Voronoi Cell finite element model.
The commercial general purpose code ABAQUS [31] is used for global analysis at the level of over-
all structural geometry and applied loads. The interfacing between macro- and micro-calculations are
done through the user subroutine window UMAT in ABAQUS. Numerical examples are conducted to
investigate the advantages of coupled multiple scale analysis over other unit cell and continuum based
theories. Effect of shapes, sizes and locations of microscopic inclusions on the structural performance
and the evolution of microstructural stresses and strains are also studied.

2. Asymptotic homogenization for multiple scale analysis

Consider a heterogeneous body occupying a region L ructure in Fig. 1(a), for which the microstructure
constitutes of spatially periodic representative material elements (RMEs) as shown in Fig. 1(b). Only
small deformation elastic-plastic deformation of the body is considered in the absence of inertia. The body
is subjected to a system of time/load dependent body forces f (¢), surface tractions #(¢) on the boundary
I'; and prescribed displacement fields on the boundary I,. In real heterogeneous materials, dimensions of
the RME of characteristic length / are typically very small in comparison with the dimensions of the body
of characteristic length L. The ratio of these microscopic and macroscopic scales /L is represented by a
very small positive number e. When subjected to structural level loads and displacements, the resulting
evolutionary variables, e.g. deformation and stresses, vary from point to point at the macroscopic scale
x. Furthermore, a high level of heterogeneity in the microstructure causes a rapid variation of these
variables in a small neighborhood € of the macroscopic point x. This corresponds to a microscopic
scale x/e and consequently, all variables are assumed to exhibit dependence on both length scales, i.c.
@ = d(ix,x/€). The superscript € denotes association of the function with the two length scales. In this
notation, £2¢ corresponds to a connected domain that extends the structural domain to its microstructure.
Mathematically speaking,
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in which @(y) = 1 when y lies in the microscopic RME. In most of the work on homogenization
theory [22, 18, 20, 25], a periodic repetition of the microstructure about a macroscopic point x has been
assumed, thereby making the dependence of the function on y = (x/¢), periodic. This characteristic is
often termed as Y -periodicity, where Y corresponds to a RME. The instantaneous tangent modulus
tensor Ef]k[, relating the stress rate (increment) to the strain rate (increment), and the corresponding
instantaneous compliance tensor Sf;; in the connected domain are expressed as

Efy(0) = Egglx,y) i 0 (2)

SEe) = Eply(e,y) in (3)

It is assumed that the stress, strain and displacement fields satisfy the rate or incremental forms of the
equilibrium equation, kinematic relation, and constitutive relations given as

o5, =—f in O @)
ou oust .

é = (c'?xf + %) in 0 (5)

of = Efjy€p in F (6)

where 1§ = uf(x,y) is a Y -periodic rate of displacement field in y. Furthermore, the boundary conditions
are assumed to satisfy the following equations on the prescribed traction and displacement boundaries,
respectively.

o5n; =t on I, (7

uf =u; on I, (8)
where n is the unit normal to the boundary. Since small deformation is assumed in this analysis, the
normal vector does not change significantly with load. In homogenization theory, the Y -periodic dis-
placement rate or increment field is approximated by an asymptotic expansion with respect to parameter
€

ut(x) = i'(x,y) + i (x,y) + Ea(wy) 4o y=T ©)
Noting that the spatial x* derivative of any function depends on the two length scales and is given as
0 x 8<D 169
1)) == 10
Ox¢ ( (x,y e)) Hx, € (9\), 19)
the strain rate tensor may be expressed as
é;[:&l;:l%+ % auk ‘e 8uk+(’9uk Y (an
ox; € 0y ox; 8y, dx; Iy

Substituting this in the constitutive relation (6), the stress rate ¢;; can be expanded as

1
o = —0' + 0‘ +€ed’ + €207 - (12)
I T € ij ij
where
ol
o =E¢, —%
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ol oul
-1 _ e k k
0;; = Efju (B—x, + B_y;) (13)

oul o
2 k k
% _Efjkl (6x1 " 8y,)

Putting the expansion of ¢ (12) in the rate form of equilibrium equation (4), and setting each coefficient

of € (i =—-1,0,1,2,...) to zero, results in the following set of equations.
8_)/']'
%6 , %% _ (14
ay, "B, )
8(}1.2- gl .
J ij
) AU R S
oy, " ox, T

If x and y are considered as independent variables, Eqs. (14) form a recursive system of differential
equations for the functions 4V, &!,4? ... parameterized by x. An important result that is used to solve

(e

the system of equations (14) is given as follows [24]. The equation

9 o
2 g =—=) = i 15
oy (w05 ) =F in ¥ (15)
for a Y -periodic function @ = @(x,y) has a unique solution if the mean value of F, defined by
(F>:_1—/de:0 (16)
Y] Jy

where |Y | denotes the volume of the RME. Eqgs. (14) and (13) together with results (16) leads to the
trivial value for (r,.‘j., and therefore establishes that #° is only a function of x as shown in [25], i.e.

-0 0 -0
0;, =0, and u =u;(x) (17)
2.1. Microscopic equilibrium equation and homogenized constitutive relation

Substituting (17) into the second of Eq. (14) leads to the Y -domain equilibrium equation

80}17 0 (18)
Oy; o

From Egs. (6), (11) and (12), by neglecting the terms associated with € or higher, the constitutive relation
in ¥ is expressed as

€ 1 _ e e
gjj = 0;; = Eijklekl (19)

where
-0 -1
o, Ou,

Tk 20
8x, * By( ( )

é;l :é_kl +é;1 =
Here, ¢;, is the local or microstructural strain rate tensor, for which € = aug /8x, is an averaged macro-
scopic part, and €}, = du, /9y, is denoted as a fluctuating strain rate tensor [32]. With the equilibriated
microscopic stress rate ('ri‘j and displacement rate &} fields completely determined by Egs. (18)—(20), a lo-
cal structure tensor denoted by M Iﬂ‘fn is calculated by applying a unit components of a macroscopic strain
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rate tensor. The local structure tensor MX! is used to establish a relation between the local microscopic
pm
strain rate é;,, and the macroscopic strain rate ey as

&5, = My éom (21)

Due to linearity of the rate(incremental) problem, (rilj and u! can be expressed in the forms

ou) ol
PRy A Kkt O
0;j = ()’) u = x(y); x, (22)
where
a6} (y) : . S
By =0 (microscopic equilibrium) (23)
J

In Eq. (22), 6 is a Y -antiperiodic function and x/ is a ¥ -periodic function representing characteristic

modes of the RME. Substituting Eqs. (22) and (21) in Eq. (13) yields the microscopic constitutive
relations as

4 () = EfjpmMpy, (24)

The local structure tensor is related to the Y -periodic function x'

Xt
MM =Ty + 67’;] (25)
where T} is a fourth-order identity tensor expressed as
1
TS = 5 By + 8i1dx) (26)

The set of equations (22) and (25) determine the vector X(y)” to within an additive constant. The mean
of Eq. (24) yields the homogenized elastic-plastic tangent modulus, for use in the macroscopic analysis,
in the form

a il
H Ak{ _ kil
Efl, = (&%) |YI/ dy |Y|/E,“,m (T 8”") dy 27)

2.2. Macroscopic equations

Taking the mean of the third equation in (14) on Y and applying the condition (16) to the first term
oo 7/0y; leads to an averaged form of the global equilibrium equation as

a<fr1>
8x]

fz in Qstructure (28)

Note that the above equation (28) is now valid for the macroscopic domain (Xucure- Thus, in the

macroscopic domain, the averaged stress rate 3 = (¢!) and displacement rate & fields are the solutions
to the elastic-plastic probiem delineated by the equations:

Wj] = —f; in seructure
3 = Efjyéu (29)

E,—,n,» = i,' on F,
-0 =

u; = U on I,
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An incremental small deformation analysis is pursued with Eq. (29) at the macroscopic level, and by
using the Voronoi cell finite element model (VCFEM) for solving the microscopic problem. Develop-
ments of the incremental VCFEM model for heterogeneous microstructures are presented in the next
section.

3. Microstructural analysis with VCFEM

Voronoi cells, resulting from Dirichlet tessellation of a heterogeneous microstructure, make rather
unconventional elements, due to the arbitrariness in the number of edges. The Voronoi Cell finite ele-
ment model developed by Ghosh and coworkers [26-29] avoids difficulties of conventional displacement
based FEM formulations by invoking the assumed stress hybrid method introduced by Pian [33]. In this
formulation, independent assumptions are made on an equilibriated stress field in the interior of each
element and a compatible displacement field on the element boundary. Small deformation elastic-plastic
analysis of materials with embedded second phase has shown significant promise with respect to effi-
ciency and accuracy [26, 27]. Details of this development based on the hybrid formulation, originally
proposed by Atluri and coworkers [34, 35], are presented in [26, 27]. In this section, a brief account of
this formulation is presented for completeness.

3.1. Variational principles in VCFEM

Consider a typical representative material element (RME) Y tessellated into N Voronoi cells, as
shown in Fig. 1(b). This is based on the location, shape and size of N heterogeneities as explained in {30].
The matrix phase in each Voronoi cell Y, is denoted by Y, and the heterogeneity (void or inclusion) is
denoted by Y. The matrix-heterogeneity interface 9. has an outward normal n¢, while #° is the outward
normal to the element boundary dY,. In this presentation, n incremental finite element formulation is
invoked to account for rate independent plasticity. At the beginning of the pth increment, let o be an
equilibriated stress field with a strain field e (o, load history), and # be a compatible displacement field
on the element boundary. Also, let Ag correspond to an equilibriated stress increment in Y., Au to a
compatible displacement increment on 9Y,, and Af to a traction increment on the traction boundary
Im. The incremental problem is solved by using a two field assumed stress hybrid variational principle,
derived from an element energy functional as

He(Aa-,Au):~/ AB(o,Ac) dY — [ e:AadY
Y. Y.
+f (0+A(r)-n“~(u+Au)8Yf/ (F +Af) - (u + Au) dI
aY, o
- (" +Ao™ — o —Ao*) -n° - (u' +Au') BY (30)

Y.

where Au’ is the displacement of the interface and AB is the increment in element complimentary
energy. Superscripts m and ¢ represent, respectively, the matrix and second phase parts of the Voronoi
cell element. The energy functional for the entire domain is obtained by adding each element functional
as

m=> "1, (31)

The first variation of I, with respect to the stress increments Ao, results in the kinematic relations
as the Euler equation,

VAu=Ae inY, (32)
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while the first variation of IT with respect to boundary displacement increments Au yields traction
conditions as Euler equations,

(0 +A0) 0" = —(o+A0) -n‘" on cell boundary I, (Interelement traction reciprocity)
(0 +Ac) -n® = +At on traction boundary I7,, (33)

(0°+A0°) -0 = (" +Ao™) - n° on interface OY. (Interface traction reciprocity)

Equilibriated stress increments A, constitutive relations, along with the incremented form of the energy
functional completely define the microstructural problem in the pth increment.

3.1.1. Element formulations and assumptions

In the Voronoi cell finite element model (VCFEM) formulation, independent assumptions on stress
increments Ao are made in the matrix and heterogeneity phases to accommodate stress jumps across
the interface. Use of stress functions @(x,y) is a convenient way of deriving stress increments in two-
dimensional analysis. Different expressions may be assumed for @ in the matrix and inclusion phases.
In general, these can be arbitrary functions of location, yielding stress increments in the form

{Ao™} = [P"(x,y)[{AB™}
{80} = [P(x, y)|{AB'}

where {AB}s correspond to a set of yet undetermined stress coefficients and [P] is a matrix of interpo-
lation functions. Compatible displacement increments on the element boundary 9Y, as well as on the
interface Y., are generated by interpolation in terms of generalized nodal values. The displacement
increments on the element boundary and interface may then be written as

{Au} =[L°]{Aq}
{Au’} = [L)/{Aq'}

where {Ag} and {Aq'} are generalized displacement increment vectors and [L] is an interpolation matrix.
Substituting element approximations for stresses (34) and displacements (35), in the energy functional
(30). and setting the first variations with respect to the stress coefficients AB™ and AB¢, respectively, to
zero, results in the following two weak forms of the kinematic relations (32),

(34)

(35)

/Y [P"|T{e + Ae}dY = / P 4Y {ag) - / P dY (A}

(36)
/ [PT{e + Ae}dY — / [P ()L dY {Aq')
Y, Y.,

Setting the first variation of the total energy functional (31) with respect to Ag and Aq' to zero, results
in the weak form of the traction reciprocity conditions as

i f)YV[LE]T[nf]T[P'"] dY 0 Bm . Aﬂm
! */ L) e [P) dY / L] )" [P dY { B +AB }
aY. Y,
¥ / L] {7 + At} dY } -
e=1 {0}

For an elastic-plastic material, the strain increments Ae in Eq. (36) are non-linear functions of the current
state of stress & as well as of their increments Ao The non-linear finite element equations (36) and
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(37) are solved for the stress parameters (AB™, AB) and the nodal displacement increments (Aq, Aq’)
at the pth increment.

3.1.2. Shape based stress representations

An important criterion, affecting the convergence of multiple phase Voronoi cell elements, is the
proper choice of stress fields in each of the constituent phases. Choosing stress functions from micro-
mechanics considerations, adds considerably to the element efficiency. Three different conditions that
are indispensable in this regard are:

(1) Stress functions should, in some way, account for the shape of the heterogeneity.

(2) Effects of the heterogeneity shape should vanish at large distances from the interface for matrix

stress functions.

(3) Shape effects in matrix stress functions should facilitate traction reciprocity at the interface.
For heterogeneous materials, the first two considerations imply that the shape effect should be dominant
near the interface, but vanish in the far-field. The third condition is intended to counteract interface
tractions caused by the inclusion for composites, while reduce to zero interface tractions for porous
materials. Pure polynomial forms Airy’s stress functions do not explicitly account for the shape of the
heterogeneity and requires very high order terms for convergence. This problem of stress concentrations
around voids has been solved by Tong et al. [36] and Piltner (37] for elastic problems with cracks and
holes. They have used complex functions and conformal mapping techniques to construct trial stress
functions. A similar approach is pursued in VCFEM to deal with arbitrary shaped interfaces for non-
linear materials. Suppose that equation of the interface dY, in Fig. 1(c) can be expressed in polar
coordinates as g(r, #) = 0, where the r coordinate is measured from the centroid of the heterogeneity.
A Fourier series expansion for r in terms of the polar angle # may be expressed as:

r=a,+ Za,, cos(nd) + Z b,sin(nf) on 3Y, (38)

where a, and b, are the Fourier coefficients. The interface equation may then be expressed from (38)
as

g(r,0)=f—aLO—ZZ—ZCOS(n())—ZZ—:sin(nB):O (39)

n

Here, f corresponds to a function that transforms any arbitrary shaped interface to an approximate
unit circle, since f(x,y) =1 on dY.. The mapped function f(r, #) may be thought of as a special radial
coordinate with the property that 1/f — 0 as (x,y) — co. This function is now used to construct stress
functions in the matrix region Y,, from the two part expression

" = Bpoyy + Prec (40)
with @, expressed in terms of a polynomial expansion of coordinates, i.e. P, =3, Bpgx"y?. For
each polynomial term in &g, there exist shape based reciprocal terms @, that give rise to stresses

equilibriating the traction field on 8Y,. This is written as

o ABi A |
rec — E &t (_flj—iz—l+@+) = E xPyt AB]"I’
Pq

fp+q+l ] fp+q+i—1
pPg.

The inclusion is modeled using polynomial stress functions only. The matrix phase stress increments in
two dimensions are obtained from the conventional stress function-stress relations to yield:
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8 (xPyd & (xPye/f1) )
) —(7—) ABpg+ ) _z/" ABpqi
ay , dy
Bt | B L S
xPy xly
Do =8 D ga Mt Y g A
4% L) e B )
’ xPyd xPyd/f! .
| B Z Oxdy ABpq - %. Ox0y ABpg:

AByy ABin

= [P poly] A[;pt] + [Prec] AB:pqi

=[P"]{AB"} (41)

A detailed treatment of stress function selection and convergence issues are presented in [27].

3.2. Constitutive relations

A rate independent small deformation elastio-plastic constitutive relation, following J; flow theory
with isotropic hardening is considered in this paper. A brief account of the numerical integration of the
constitutive relations is presented here. More details are provided in [26, 27]. An additive decomposition
of the strain increments Ae into an elastic part Ae® and a plastic part AeP' is assumed, i.e.

Ae = Ae® + AeP (42)

The yield surface in stress—space at the beginning of the pth increment is expressed as

Y”(e,Ae):\/%a':o’ (43)

where ¢’ is the deviatoric stress and Y (e,Ae) is the radius of the flow surface. The plastic strain
increment AeP' is obtained by numerically integrating the flow rule by the backward Euler method to
yield:

AeP = AA(o +Aa) (44)
where AA is a non-negative incremental flow parameter. Since Ae is in general a function of AA, o and
Ao, the flow surface radius can be expressed in the form,

yrH = yrti(AA, o, Ao)
and the flow parameter AX can be evaluated from the following relations.

AL =0 if o' <Y? (elastic unloading) (45)

ol = YP' if ¢7*' > YP (neutral and plastic loading) (46)

Numerical implementation requires computation of tangent operators through linearized forms of the
constitutive relations. If de is the first-order correction to the current strain increment Ae, and do is
the corresponding stress increment Ao correction, the fourth-order elastic-plastic compliance tensor (or
tangent operator) S is given by the relation

de =S :do
The elastic part of this equation expressed as

de® =8, :do (47)
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The plastic part of the strain correction deP' however requires a first-order correction dA to the current
flow parameter AA, which by the J, flow theory, takes the form

9 (o+Ao) R (o +Acd) . d

de? = o=5, .do (48)
4H (0% '

where H is a linearized hardening modulus. The elasto-plastic tangent operator § is obtained by adding
Eqgs. (47) and (48) as

S =Sc+Sy (49)

A linearized form of the incremental complementary energy functional AB in Eq. (30) can now be
expressed in terms of the tangent operator as

dB(o, do) = % do:S:do (50)

Note that the elastic-plastic tangent operator § in Eq. (49) is positive definite since its components are
individually positive definite.

3.3. Solution method

For rate independent plasticity, the strain increments Ae (Ao, o) are non-linear functions of the stress
parameters AB” and AB°. An iterative solution process is invoked to evaluate the stresses, given the
nodal displacement increments {Aq} and {Aq'} in Eq. (35). Let {dB}’ correspond to the correction to
the value of AB in the ith iteration, i.e.

{AB"} = {AB™} + {aB™)
{AB°} = {AB°} +{dB"}

The kinematic equation (36) may then be linearized with respect to AB to yield:

i mT i

e Y frY (G G (gra0) [ e ey ay .
0 H.|\dp 0 Ge. |\ qd+Aq /[PC]T{HM},-M

Y.

or in a condensed form as

[H]{dﬂ}":[c]{q}~{fy[P]T{e+Ae}fdy} (52)
where

ol = [ PTisIP=ay . = [ peTsip av

G.] = /a Y([P'”]T[ne][Le]dY, (Gon] = /} . P [n][L)dY ,  [Ge] = fa yr[P”]T[n"][L”]dY

[S(x,y)] is the instantaneous elastic-plastic tangent compliance tensor as derived in Eq. (49) and [n] is a
matrix consisting of the components of the normal. A quasi-Newton iterative solution procedure is used
to solve Eq. (51).

The above procedure of solving for the stresses takes place within an iterative loop, in which the
traction reciprocity conditions (37) are solved for the nodal displacement increments {Ag} and {Aq'}.
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Proceeding in the same way as for stresses, let {dg}/ correspond to the correction in {Aq} in the jth
iteration of (37), i.e.

{Ag} = {Aq} + {dq}/

{Aq'} = {Aq'Y + {dq'}/

Substituting Eq. (51) in the linearized global traction reciprocity equation (37), with respect to {Aq}
yields the matrix equation:

Ej:GJT ‘[G{ q}":é /[L"’]T{OE+A_t}dY

’

m

/ e1Tr,,e1 T pm
o] [ Teemay 0 (0 .
e=t | = -/)Y [LC]T[nC]T[Pm]dY / [LC]T[”{]T[PC] dy B+ AB
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With known traction increments on I}, and displacement increments on [, the linearized global trac-
tion reciprocity condition (53) is solved iteratively using the quasi-Newton method for nodal displacement

increments.

3.4. A numerical test example

The effectiveness of the elastic-plastic Voronoi cell finite element model in analyzing heterogeneous
microstructures is established by several numerical examples in [26, 27]. In this section, a representative
example is presented to illustrate its competence. The representative material element (RME) analyzed,
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consists of 29 randomly located circular voids with volume fraction V; = 20%. Results generated by
VCFEM are compared with those of a displacement based commercial finite element code ANSYS
with a very high resolution mesh, necessary for convergence. Figs. 3(b) and (a) show the VCFEM mesh
with 29 elements and the ANSYS mesh with 5282 QUAD4 elements, respectively. Plane strain uniaxial
tension loading is considered to a maximum of 0.8% macroscopic strain. Periodic construct of the RME
is achieved through repeatability conditions on the traction free face. The matrix material is Aluminum
with the following properties:

E =69 GPa (Young’s Modulus ), v = 0.33 (Poisson’s Ratio)

Y, = 43 MPa (Initial Yield Stress), Oeqv = Yo + egql\?j (Post Yield Hardening Law )

The VCFEM analysis uses a 48 term stress function (p+q = 2...4and i = 1...3) in the matrix in Eq. (41).
Comparison of macroscopic response in Fig. 4(a) clearly establishes VCFEM as an accurate method for
modeling overall behavior of random microstructures at a significant advantage in computing efficiency.
The microscopic stress distribution through the section A-A in Fig. 3(b) at 0.8% strain is depicted in
Fig. 4(b). Once again the comparison is very satisfactory, with VCFEM producing similar patterns and
peak stresses with the highly refined ANSYS model.

4. Elastic-plastic homogenization with VCFEM

In this section, the Voronoi Cell finite element model is formulated to be applied in conjunction
with the homogenization method for coupling global and local analyses. VCFEM is used to model an
arbitrary microstructural RME, and consequently, ¥ represents a RME with a boundary 8Y. In an
incremental formulation, the equilibriated microscopic stress increment corresponds to Ae'(= Ao€)
in Eq. (22) and the microstructural strain increments are designated as Ae€ in Eq. (20). Similarly, the
increments in microscopic displacements on the cell boundaries 9Y, are identified with Au' in Eq. (22)
and those on the interface are denoted by Au'’. In the absence of traction boundaries due to periodicity
conditions, the incremental energy functional for each Voronoi cell element in Eq. (30) is modified for
the homogenization process as:

l € € €
- - /Y 38w A Mg dY - /Y

¢

e AafdY + / (of +Ad) (u} +Au/) n§ dOY
aY,

| (oA ot - Aaf) (W + Aul') n¢ dOY + / (é; + Aé)Aas dY (54)
ay, Y,

where Sf].,“, is an instantaneous elatic-plastic compliance tensor. The last term in Eq. (54) incorporates

the effect of macroscopic strains in the microstructure. The stationary condition of [I, with respect to
stress increment Aafj yields, as Euler’s equations, the incremental form of kinematic relations (20)

O(u! + Au)
dy;

e +Aef; = e;; + Aej; + (55)

Furthermore, stationarity of the total energy functional IT = Z::l I1, with respect to displacement
increments Au,! and u!', respectively, result in the inter-element and interface traction reciprocity condi-
tions:

(0f + Aafy) - nS* = —(af + Aaf) -nS” on Y, (56)

(055 + Aaf) - nS = (o7 + Aa) -nS on Y, (57)

where superscript + and — denote values on opposite sides of the inter element boundary dY,. The three
Euler’s equations together with (a) the assumed equilibriated stress fields satisfying Ao, =0inY,, (b)
assumed compatible displacement increment fields in Y, and 8Y,, and the instantaneous constitutive
relation Aef; = Siiu Aoy, describe the incremental boundary value problem for the microstructure.
The microscopic VCFEM module is executed for two purposes in each increment of the macro-
scopic module. The first is to evaluate the microscopic stress increments Ao € from given values of the
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macroscopic strain € at the beginning of the step, and its increment Aé. The second is to calculate
the instantaneous homogenized tangent modulus El.’fk, at the end of the increment in the macroscopic
module.

4.1. Calculation of microscopic stresses

This step involves the iterative solution of modified forms of the kinematic relations (36) and the
traction reciprocity conditions (37) to yield the incremental stress parameters AB and the nodal dis-
placement increments Aq and Aq’. The weak form of the element kinematic relation (55) is obtained by
modifying (36) for homogenization in the multiple scale model as

f [P {e€ +Ae€ — & — Aé} dY = / (P™T[rf][L]dY {g+Aq}.
Y. — Y, ayY,

- /W [P )L dY {q'+Aq'} (58)

f [P)"{e€ + Aec —& — Aé} dY :/ (P"[n)[L°)dY {q' + Aq'}. (59)
Y. Ay,

As mentioned in Section 3.2, an iterative solution process is implemented for evaluating stresses from
given values of the nodal displacements. In the ith iteration, the total strain increment {Ae*} is linearized
with respect to stress increment {Ao€} in the form:

{Ae€} = {Ae‘(a‘,Aa")}i + (8] {daf}i (60)
where the correction {de€}' to stress increment is expressed as,

{do<} = [P){dB} inY. (61)
Substitution in (58) and (59) leads to the linearized kinematic equations (51) in conjunction with the

homogenization procedure as

i mTy € € = A=
[Hm 0 ] {dﬂ’” } _ [Ge ‘—Gc.m] { g+Aq } /Y“_Y([P ['{e€+Ae —& —Ae}dY
0 H(- dﬂ 0 Gc(- q’+Aq’ / [P(‘]T{ee +Aee[ 7é fAé}dY

Y.

(62)

where components of the matrices are explained in Eq. (51). The traction reciprocity equations (53)
are iteratively solved for nodal displacements in the same way as mentioned in Section 3.3. In the jth
iteration, this corresponds to the solution of the linearized global traction reciprocity equation:

N L el P Y 0 m,Agm)
5| b vl )
! _/ (LT [n) [P dY / L) )Py Tdy | LB AR
Y, ay,

4.2. Calculation of homogenized tangent modulus

Evaluation of the homogenized tangent modulus tensor Ei’fk, is performed at the end of an increment
in the global analysis (ABAQUS) after converged values of microscopic variables have been obtained.
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From the basic definition in Eq. (27), components of E;‘]k, are obtained by averaging the true strcss
increments in response to unit increments in components of the strain tensor €. In two-dimensional
analysis the individual components correspond to €, &2 and €1,. or in contracted notations &,, &, and
€3, i.e. e;, i =1,2,3. This is obtained first by consistent linearization of the element kinematic relation
in Eq. (51) with respect to each component of the macroscopic strain increment €; to yield:

[Hm 0 ] {SBH']} [Ge VG”"H&I} - /Y"Y‘[PM]T{Béi}dY (64)
0 H(- SB‘ 0 Gc(' Sq’ ; [PL}T{Sé,}dY

¢

i

In Eq. (64), it is assumed that the stress coefficients B and generalized nodal displacements g are
perturbed about their respective equilibriated and compatible values, corresponding to a prescribed
perturbation in €;. The nodal displacements 8g in Eq. (64) are solved by linearization of the global
traction reciprocity condition (37) with respect to &;, given as

N / (P""{3¢,}dY
Y.-Y.

G | iH1618 4 b
§ | ]{84 },- - f [P<|"{%e;}dY

¢

=0 (65)

The solved values of {8q}; yield the characteristic modes of deformation as plotted in Figs. 16-18.
These are subsequently substituted in the local compatibility equation (64) to solve for element stress
coefficients {88};. It should be noted the tangent modulus is evaluated from unit values of {8é;}, i.e.

1 0 0
(deb=40%, (e} ={1Y%, {se:1=¢0
0 0 1

Components of the elatic-plastic homogenized tangent modulus tensor E,.’]?'k, are then obtained from Eq.
(27), by averaging [P|{dB}; for each component of the macroscopic strain, as

N N N
Y RGIEEID W RLTTZES v (,[P]{dﬂ}_;] -

Hii

5. Numerical implementation

A number of numerical details have to be considered in the construction of a multiple scale com-
putational model using the microstructural VCFEM model. In this section, a few salient features are
discussed.

5.1. Incorporation in the macroscopic analysis module

The Voronoi cell finite element module is incorporated in a macroscopic analysis module with the
interface being created by the homogenization procedure. In this work, the general purpose commercial
code ABAQUS has been chosen to serve as the macroscopic analysis program. Macroscopic ABAQUS
models are developed with two-dimensional elements. The material constitutive relation at each inte-
gration point of ABAQUS elements is input through the homogenization process by using results from
the microscopic VCFEM analysis. This interface between ABAQUS and VCFEM is created through
UMAT, intended to incorporate user specified constitutive models in ABAQUS. The analysis code re-
sulting from this macro-micro coupling is termed as VCFEM-HOMO. QUAD4 elements with one-point
reduced integration and hourglass control are selected in ABAQUS analysis. ABAQUS and VCFEM
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codes used in this analysis implement implicit time integration schemes, and hence require iterations at
both levels for convergence.

Within each iteration loop of macroscopic analysis in the pth increment, microscopic state variables
are computed in VCFEM using given values of the macroscopic strains at the beginning of the incre-
ment and its increment, as shown in the flow chart of Fig. 2. The microscopic stresses are averaged to
yield macroscopic stresses. Upon convergence in global and local iterations, the microscopic VCFEM is
invoked again to evaluate the homogenized elastic-plastic tangent modulus E by applying unit com-
ponents of macroscopic strain. All the history dependent microstructural variables, e.g. stresses, strains
and plastic strains are retained and updated during the incremental process.

5.2, Implementing periodicity boundary condition

An essential step in computing the homogenized material properties is to ensure repeatability bound-
ary conditions on the RME. For a square or rectangular RME, identical displacement functions must be
specified for corresponding nodes (equidistant from a coordinate axis) on opposite edges. Implementing
the repeatability boundary condition for a regular finite element mesh is straightforward, since a uni-
form mesh can be generated to have the correspondence between boundary nodes on opposite faces.
However, boundary nodes of the Voronoi mesh generated by Dirichlet tessellation, are in general quite
arbitrary and such a correspondence cannot be easily established. A method which involves representa-
tion of nodal boundary displacements by a suitable polynomial function is implemented for enacting the
repeatability conditions. In this method, a (¢ — 1)th order polynomial is chosen for the displacements,
where g corresponds to the highest number of boundary nodes between the two opposite faces. That is,
if one face has 5 nodes while the opposite side consists of 6 nodes, a 5th order polynomial function is
chosen. The edge nodal displacements are then written as

R .
Wy =ag+a\X; + @x] +asx] +agx} + asx;
2 3 4 s
v1 =bo + biy1 + bayi + bayi + bay| + bsy;
Up = ag + Q1% + @rX3 + A3X5 + AgX5 + asx; (67)

V2 = b + biys + boys + bsys + bays + bsy;

where uy,vy,up,0; ... are nodal displacements and x1, y;, x2, y; . . . are boundary coordinates. These lead
to displacement constraints in the matrix equations prior to solving.

6. Numerical examples

Numerical examples conducted with the multiple scale homogenization module VCFEM-HOMO, are
divided into two categories. The first set of examples are intended to validate the effectiveness of the
asymptotic homogenization in conjunction with Voronoi cell FEM formulation for heterogeneous ma-
terials with both inclusions and voids. This is accomplished through comparison of VCFEM-HOMO
results in simple tests, with (a) those generated by Unit cell models using conventional finite element
codes such as ABAQUS, (b) experimental/analytical results, and (c) effective continuum models. The
comparisons also help in identifying some of the shortcomings of alternative approaches, and where
coupled multiple scale analyses is desirable. In the second set of examples, the VCFEM-HOMO code is
used to solve more complex multiple scale problems with various microstructural morphologies. Effects
of the microsctructure in the evolution of macroscopic and microscopic variables are investigated. The
material in all the ensuing examples is assumed to be a FT/Al composite or aluminum with voids, unless
otherwise mentioned. The FT fiber is assumed to be elastic while the aluminum matrix is an elastic-
plastic material with the following properties.
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Material Properties:
FT fiber (99% crystalline a-alumina (Al,O3) coated with silica)
Young’s Modulus (£,): 344.5GPa Poisson Ratio (v.): 0.26

2 wt% Li-Al binary alloy matrix

Young’s Modulus (£,,): 68.9 GPa Poisson Ratio (v,,): 0.32

Initial Yield Stress (Yy): 94 MPa Post Yield flow rule: €qy = Yo/Em{0eqv/ Yo}’

The microstructural VCFEM analysis uses a 48 term stress function in Eq. (41) (p + ¢ = 2...4 and
i = 1...3) for the matrix of porous materials, and a 34 term stress function (p+¢ =2 and i = 1...3) in
the matrix of composite materials. The stress field in the inclusion for composite materials is generated
with a 25 term polynomial stress function (i.e. q);;oly: p+q = 2..6)). It should be noted that elastic
problems with homogenization and VCFEM have been successfully solved in [28].

6.1. Validation of the homogenization model

6.1.1. Numerical unit cell models

In this example, results of VCFEM-HOMO are compared with predictions of numerical unit cell mod-
els for plane strain elastic-plastic analysis. Two microstructural arrangements, viz. square edge distribu-
tion (SED) and hexagonal distribution (HD) as shown in Fig. 5, are considered. For VCFEM-HOMO
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Fig. 5. Computational model of a composite material with a circular inclusion of volume fraction 55%. (a) Macroscopic and
microscopic models for square edge distribution by VCFEM-HOMO; (b) microstructural ABAQUS Unit Cell model for Square
edge distribution; {(c¢) macroscopic and microscopic models for Hexagonal distribution by VCFEM-HOMO; (d) microstructural
ABAQUS Unit Cell model for Hexagonal distribution.
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analysis, the macroscopic ABAQUS mesh consists of a single QUAD4 element, and a single Voronoi
cell element is required for microstructural analysis as shown in Fig. S(a) and (c). Unit cell analyses are
conducted at the microstructural level only, with the representative material element (RME) modeled by
QUAD4 elements in ABAQUS, illustrated in Fig. 5(b) and (d). The inclusion volume fraction is 55%.
The periodic construct of unit cell is achieved through restrictive repeatability conditions enforced on
edges x = L and y = L. This constraint condition requires rectangular cells to deform into rectangular
shapes, i.e. straight line edges (x = L,y = L) move uniformly as straight lines. For the SED and HD
arrangements, the ABAQUS mesh consists of 1440 and 1482 QUAD4 elements, respectively.

Comparisons are made for macroscopic as well as microscopic response by the two approaches. For
the unit cell model, macroscopic variables denoted with an overbar, are obtained by volume averaging
the microscopic response. For example, macroscopic stresses & are evaluated as:

fﬁxm odf

=2 a0

12rME

Figs. 6 and 7 show the macroscopic stress—strain relations and the microscopic stress distribution for
the square edge and hexagonal packings, respectively, when subjected to uniform stretching. Figs. 6(a)
and 7(a) show excellent agreement between VCFEM-HOMO and Unit Cell model in the macroscopic
responses at all load stages. Figs. 6(b) and 7(b) show the microscopic stress distribution in the direction
of applied strain along sections at y = L/2 and y = 0 in Figs. 5(b) and (d), respectively. Though the
VCFEM-HOMO results for both packings compare well with unit cell predictions, better agreement is
seen with HD packing due to the refined unit cell mesh along the section considered.

VCFEM-HOMO code is next utilized to investigate the effect of microstructural morphology on the
material response. Four different arrangements are considered with circular inclusions of 55% volume
fraction, viz. (a) square edge distribution (Fig. 5(a)), (b) hexagonal distribution (Fig. 5(c)), (c¢) square
diagonal distribution (45° rotation of Fig. 5(a)) and (d) random distribution with 29 inclusions (Fig.
8) The ABAQUS macroscopic mesh consists of one plane strain element, subjected to simple tension
and simple shear boundary conditions to maximum effective strains of 0.008. The effective macroscopic
stress—strain behavior is depicted in Fig. 9. On account of the rotational equivalence of RMEs, the
behavior of the square edge and square diagonal distributions are exactly reversed for the two loading
conditions. The results indicate the strong anisotropy in overall behavior of these two RMEs. The
random and hexagonal packings, on the other hand, exhibit similar response in tension and shear. This
establishes the low directional dependency of these RMEs, implying near isotropic behavior. The stress—
strain curves for the latter two distributions lie within the envelopes of the SE and SD distributions, and
hence exhibit more overall ductility.

6.1.2. Effective continuum models

This set of examples examines some of the differences between effective continuum models and
coupled macro—micro analysis for simple loadings. Furthermore, the VCFEM-HOMO code is also tested
against experimental and analytical results.

In the first example, overall stress—strain plots are first generated by uniaxial stretching of VCFEM
models in Figs. 5(a) and 8 under plane stress conditions. This is then input as the homogenized ma-
terial law in ABAQUS with isotropic hardening and associated flow rule. The ABAQUS mesh with
this effective continuum model consists of one QUAD4 element. Likewise, the macroscopic ABAQUS
mesh for VCFEM-HOMO consists of one QUAD4 element and the microscopic models are illustrated
in Figs. 5(a) and 8. Macroscopic longitudinal stress—strain relations, and transverse-longitudinal strain
relations by the two approaches are plotted in Figs. 10 and 11. Comparisons are made for three different
microstructures, viz. (a) square edge packing with 10% inclusion volume fraction, (b) square edge pack-
ing with 55% inclusion volume fraction, and (c) random packing with 55% inclusion volume fraction.
The stress and strain plot in the loading direction (Fig. 10) shows excellent agreement between the
continuum model and VCFEM-HOMO results. An increase in the inclusion volume fraction leads to
a considerable reduction in the ductility due to the higher stiffness of the elastic inclusion. Though the
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Fig. 6. Comparison of macroscopic and microscopic response for Square edge packing composite between VCFEM-HOMO and
Unit Cell models. (a) Macroscopic stress-strain response along the load direction: (b) microstructural stress distribution along a
section through the inclusion y = L/2.

Fig. 7. Comparison of macroscopic and microscopic response for Hexagon packing composite between VCFEM-HOMO and Unit
Cell models. (a) Macroscopic stress—strain response along the load direction; (b) microstructural stress distribution along a section
through the inclusion y = 0.

random distribution shows a less stiff response than the square edge distribution for the same volume
fraction (55%), this plot confirms that the effect of volume fraction is much more pronounced that that
of distribution. The two approaches are at considerable variance in the transverse-longitudinal strain plot
(Fig. 11). The continuum model shows nearly identical strain responses for all inclusion volume fractions
and distributions. This can be explained by the fact that the continuum models assume total yielding of
the microstructure after initial yield, and consequently enforces the constraint that macroscopic plastic
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Fig. 9. Effective macroscopic stress—strain responses of various distributions under (a) simple tension (b) simple shear.

strains are volume preserving, This leads to direct dependence of transverse plastic strains on the longi-
tudinal strains, and the microstructure contributes only to the elastic part of the transverse strain. The
behavior is however quite different when solved with VCFEM-HOMO. In reality, only a part of the
microstructure yields at the strains considered, and this is reflected in the VCFEM-HOMO results. For
smaller inclusion volume fractions, a large portion of the unit cell is the matrix that goes plastic at initial
yield. This gives the close proximity in prediction by both models. This behavior changes significantly
at higher volume fraction, where larger portions of the matrix remain elastic. The absolute value of the
transverse strain by VCFEM-HOMO is much smaller than that of effective continuum model. Another
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Fig. 10. Macroscopic stress—strain relations for various microstructures by VCFEM-HOMO and effective continuum model.
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Fig. 11. Transverse strain-axial strain relations for various microstructures by VCFEM-HOMO and effective continuum model.

observation is that the difference between VCFEM-HOMO and continuum model results for the ran-
dom microstructure is less than that for the square edge microstructure. This may be attributed to the
anisotropic behavior of the latter that is not accounted for in the continuum models. This example clearly
points out the need for using the coupled analysis especially at higher volume fractions of heterogeneous

microstructures.
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The second example deals with porous materials, for which VCFEM-HOMO results are compared
with the Tvergaard-Gurson (T-G) continuum model [38, 39]. Plane strain simple tension, simple shear,
and biaxial tension tests are carried out for square edge packed materials with a low void volume
fraction of 5% . For comparison plane strain simulations, the T-G model for long cylindrical voids [38] is
implemented in ABAQUS through the UMAT window. In this module, numerical integration of the rates
of state variables is carried out in a way similar to Aravas [40], for spherical voids. The macroscopic
ABAQUS model for both analyses consists of one QUAD4 element and the microscopic model for
VCFEM-HOMO is illustrated in Fig. 5. The yield condition in the plane strain T-G model [38] is stated
as

> + 3 f cosh (——~——\/§ ((27“ +on)

) ~ (1+225f%) (68)
(r()

where o, is the effective stress, o, is the matrix flow stress. f is the void volume fraction and o;; are the
principal components of the Cauchy stress tensor. An important assumption in this model is:

(1 - f)(]}, E{E) = 0 6,'[; (69)
which means that the equivalent plastic work is derived solely from the entire matrix part of the mi-
crostructure.

Effective stress—strain plots in simple tension and simple shear (Figs. 12(a) and (b)) show good agree-
ment between two methods, with T-G model producing a slightly higher value of initial yield. This is
because, yield in the T-G model is manifested only after a significant portion of the microstructure
has become plastic. VCFEM-HOMO., on the other hand, shows signs of inelasticity at the very onset
of plastic deformation in the microstructure. The two approaches are, however, at significant variance
for the biaxial loading case as seen in Fig. 13(a). Though the initial yield points are fairly close, the
post yield behavior shows considerable difference between two models. As in the previous example,
the main reason for this difference may be attributed to the assumption in T-G model that the entire
microstructural matrix becomes plastic upon initial yield. In biaxial loading, as (o4, + 0»3) increases in
Eq. (68). the effective macroscropic stress o, must diminish to near zero values for satisfying the yield
condition. Physically, this also indicates that the large regions of plastic localization causes the effective
stress to drop drastically. From the VCFEM-HOMO simulation it is however seen in Fig. 13(b), that a
significant portion of the microstructure does not yield. Consequently, the effective stress in Fig. 13(a)
is higher by VCFEM-HOMO than by the T-G predictions at the end of loading.
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Fig. 12. Effective macroscopic stress—strain plots by VCFEM-HOMO and Tvergaard-Gurson model for 5% void volume fraction
in plane strain. (a) Simple tension: (b) simple shear.
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Fig. 13. (a) Effective macroscopic stress—strain plots by VCFEM-HOMO and Tvergaard-Gurson model for 5% void volume
fraction in biaxial tension: (b) Contour plot of microstructural effective plastic strain at the end of loading.

As a final example a multiple scale analysis for a porous plate with a hole is conducted by VCFEM-
HOMO and compared with the T-G model incorporated in ABAQUS. Uniaxial tension of the plate is
considered under plane strain conditions. The representative material element (RME) in the VCFEM-
HOMO analysis is a square edge packing with 5% circular void volume fraction. Figs. 14(a) and (b)
shows excellent agreement in contour plots of effective macroscopic stress distribution by VCFEM-
HOMO and ABAQUS with T-G model. The stress-strain evolution at three specific points (A), (B)
and (C) are compared in Fig. 14(c). This near perfect match is expected, since most points in the plate
are essentially in an uniaxial state of stress.

6.1.3. Comparisons with some analytical and experimental results

Plane strain VCFEM-HOMO results are compared with analytical 2 and 3-phase model predictions
due to Zhao and Weng [41] and experimental results due to Adams [42] for unidirectional composites.
The material properties are:
Aluminum
E =58 GPa (Young’s Modulus ). v = 0.33 (Poisson’s Ratio)
Yy = 89 MPa (Initial Yield Stress), Teqv = Yo + l75(e§’4v)“"125 MPa (Post Yield Hardening Law )
Boron
FE =385 GPA (Young’s Modulus ), v = 0.2 (Poisson’s Ratio)
A square macroscopic element, that has a microstructural RME of a 2 x 1 rectangular edge packing
with a circular inclusion of V; = 34%. is loaded in uniaxial tension. Fig. 15 shows that VCFEM-HOMO
results provide a better agreement with experimental results than the analytical model, which assume a
square edge packed RME.

6.1.4. Characteristic modes in elastic-plastic deformation

Characteristic modes in elastic-plastic homogenization represent instantaneous microstructural defor-
mation response to applied unit components of macroscopic strain tensor. These modes X{," are obtained
from Eq. (65). Characteristic modes are essential in obtaining the elastic-plastic tangent modulus El.'}'k,
for macroscopic analysis.

The macroscopic element is subjected to uniaxial stretching, and the microstructural RMEs considered
are square edge/random packing for circular voids (20% volume fraction), and square edge packing for
circular inclusion (40% volume fraction). Fig. 16(a) and (b) show the characteristic modes for the porous
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Fig. 14. Macroscopic effective stress distribution in a plate with a hole in uniaxial tension at 5% strain. (a) By VCFEM-HOMO;
(b) ABAQUS with T-G model (c) effective stress—strain evolution plots at three points in the structure.
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Fig. 15. Macroscopic stress-strain responses for a Boron-Aluminum composite by VCFEM-HOMO. analytical and experimental
techniques.

material and corresponding tangent modulus at the beginning of the loading and after 1% macroscopic
stretching, respectively. The initial modes depict the deformed void aligned in the direction of straining,
but this changes with plastic straining, implying the influence of internal variable evolution. Fig. 17 shows
corresponding modes for the random microstructure. Fig. 18 shows characteristic modes for composite
microstructure with regular distribution. The difference between the modes for porous and composite
materials emanates from the high inclusion stiffness that results in larger matrix deformation.

6.2. Multiple scale analysis

Two problems are considered for multiple scale analysis with VCFEM-HOMO. The effects of various
distributions, sizes, and shapes, on the overall behavior of the heterogeneous material is investigated. In
particular, the RME’s considered are (a) square edge packing with a circular heterogeneity, (b) square
diagonal packing with a circular heterogeneity, (¢) random packing with 15 circular heterogeneities and
(d) random packing with 15 elliptical heterogeneities. The material microstructure is assumed to consist
of voids, inclusions, or a combination of both.

6.2.1. Plane strain analysis of plate with holes

This set of examples deals with a thick plate with an uniform array of large circular holes in plane
strain uniaxial tension. Only a portion of the plate, shown in Fig. 19(a), is considered from symmetry
considerations. Dimensional details are given in the Fig. 19(a). The macroscopic ABAQUS model con-
sists of 128 QUAD4 elements. The left and right edges are constrained to move in vertical straight lines,
and the top and bottom edges are pulled to an overall strain of 0.5%.
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Fig. 16. Characteristic modes for voided RME with square edge distribution. (a) At the start of loading: (- after 1% stretching.

In the first example, a porous microstructure with a 40% void volume fraction is considered. Various
morphologies are considered are shown in Figs. 19(b)~(e). Figs. 20, 22, 24 and 26 show the effective stress
contours plots, and Figs. 21, 23, 25 and 27 show the contours plots of the effective plastic strains at the
structural level and also in a microstructural RME at the corner point A. It is observed that the maximum
effective stress generally occurs at this point. The macroscopic effective stress distributions exhibit very
similar patterns for all microstructures considered. There is a narrow ligament between two large holes
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Fig. 17. Characteristic modes for voided RME with random distribution. (a) At the start of loading: (b) after 1% stretching.

along which strains localize as the deformation intensifies. Similarity in the patterns of macroscopic
stress distribution is explained from an observation that the macroscopic state of stress at each point
is essentially uniaxial. Thus, anisotropy emanating from the microstructural morphology does not play
an important role in this example. Magnitude of stresses and plastic strains are however considerably
different depending on the microstructural arrangement. This is further evidenced in a macroscopic
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Fig. 18. Characteristic modes for composite RME with square edge distribution. (a) At the start of loading; (b) after 1% stretching.

stress—strain plot (Fig. 28 (a)) at the point A. The square edge and square diagonal distributions yield
nearly identical response. The random void distributions exhibit significantly more ductile behavior
compared to the regular distributions. The ductility in the random distribution stems from the plastic
strain concentration in regions of clustered voids.

A comparison of the macroscopic and microscopic contour plots reveals that the true stress in the mi-
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Fig. 19. (a) ABAQUS model for thick plate with circular holes, Various RMEs at 40% volume fraction; (b) square edge packing; (c)
square diagonal packing; (d) random packing with 15 circular heterogeneities: (¢) random packing with 15 elliptical heterogeneities.

crostructure is significantly higher than the macroscopic stresses. For example, at point A the maximum
microscopic effective stress is 160% higher for square edge, 175% higher for square diagonal, 265%
higher for random circular and 340% higher for random elliptical packing. An interesting observation is
that, though the random distribution models shows more ductile behavior, it gives rise to local regions
of significantly higher microscopic stresses. In the analysis of porous materials with large void volume
fractions, the interaction between microstructural voids, and consequently the inter-void distances ap-



94 S. Ghosh et al./ Comput. Methods Appl. Mech. Engrg. 132 (1996) 63-116

Max.
X, - 6.910E-02

6.023E-02

5.137E-02

- 4.250E-02

- 3.364E-02

f

2.477E-02

1.794E-01

1.436E-01

- 1.077E-01

7.178E-02

T

3.589E-02

T

Min /™ 0.000E+00

(b)

Fig. 20. Von Mises stress distribution for porous material with square edge packing. (a) Macroscopic stress; (b) microscopic stress
at point A.
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Fig. 22. Von Mises stress distribution for porous material with square diagonal packing. (a) Macroscopic stress; (b) microscopic
stress at point A.
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Fig. 23. Effective plastic strain distribution for porous material with square diagonal packing. (a) Macroscopic strain; (b) microscopic
strain at point A.
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Fig. 24. Von Mises stress distribution for porous material with random circular packing. (a) Macroscopic stress; (b} microscopic
stress at point A.
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Fig. 26. Von Mises stress distribution for porous material with random circular packing. (a) Macroscopic stress; (b) microscopic
stress at point A.
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Fig. 27. Effective plastic strain distribution for porous material with random elliptical packing. (a) Macroscopic strain; (b) micro-
scopic strain at point A.
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Fig. 28. Evolution of effective stress with evolving strain at point A in the heterogeneous plate with 40% second phase volume
fraction for: (a) porous material; (b) composite material.

pears to play a more dominant role than the arrangement itself, both for macroscopic and microscopic
response.

The same problem is considered again with the microstructure changed to a FT/Al composite. The
same microstructural morphologies are used with 40% fiber volume fraction. Figs. 29-32 show the effec-
tive stress contour plots at the end of loading. The macroscopic plots show that the localization ligament
between two macroscopic holes is much less severe and more diffused compared to the porous material.
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Fig. 29. Von Mises stress distribution for composite material with square edge packing. (a) Macroscopic stress: (b) microscopic
stress at point A.
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Fig. 30. Von Mises stress distribution for composite material with square diagonal packing. (a) Macroscopic stress; (b) microscopic
stress at point A.
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Fig. 31. Von Mises stress distribution for composite material with random circular packing. (a) Macroscopic stress; (b) microscopic
stress at point A.
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Fig. 32. Von Mises stress distribution for composite material with random circular packing. (a) Macroscopic stress; (b) microscopic
stress at point A.
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For the same level of macroscopic strain, the square edge packing yields the highest values of effective
stress while the square diagonal packing yields the lowest, with the random packings in between. This is
also evidenced in the macroscopic stress—strain plot at point A in Fig. 28(b). As opposed to the porous
microstructure, the arrangement of the composite microstructure has a major effect on the macroscopic
response. The distribution pattern is again similar for all RMEs due to the predominantly uniaxial state

(b) ()

(d)

Fig. 33. (a) Macroscopic ABAQUS model of thick cylinder with internal pressure, microscopic VCFE models for: (b) square edge:
(c) square diagonal; (d) random packings.
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Fig. 34. Von Mises stress distribution for square edge packing. (a) Macroscopic stress; (b) microscopic stress at point A.



S. Ghosh et al./ Comput. Methods Appl. Mech. Engrg. 132 (1996) 63-116 109

Max. ~

3.130E-03

2.519E-03

1.908E-03

1.296E-03

6.846E-04

7.316E-05

z
3
\‘

2.198E-02

1

7

1.759E-02

T

1.319E-02

T

8.793E-03

T

4.396E-03

{

Min 0.000E+00

(b)

Fig. 35. Effective plastic strain distribution for square edge packing. (a) Macroscopic stress; (b) microscopic stress at point A.
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Fig. 36. Von Mises stress distribution for square diagonal packing. (a) Macroscopic stress; (b) microscopic stress at point A.
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Fig. 37. Effective plastic strain distribution for square diagonal packing. (a) Macroscopic stress; (b) microscopic stress at point A.
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Fig. 38. Von Mises stress distribution for random packing. (a) Macroscopic stress; (b) microscopic stress at point A.
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(b)

Fig. 39. Effective plastic strain distribution for random packing. (a) Macroscopic stress: (b) microscopic stress at point A.
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of local stress. The microscopic contour plots reveal that the true stress in the microstructure is signif-
icantly higher than the macroscopic counterparts. For example, at point A the maximum microscopic
effective stress is 91% higher for square edge, 50% higher for square diagonal, 180% higher for random
circular and 177% higher for random elliptical packing. This shows that high stress concentration occurs
in certain fibers for random microstructures, and are consequently more susceptible to microstructural
damage by fiber cracking or debonding for identical levels of macroscopic stresses.

6.2.2. Thick cylinder with internal pressure

In this example a thick composite cylinder is subjected to internal pressure that is increased from 0 to
a maximum of 0.1 GPa. Only a quarter of the cylinder is modeled from symmetry considerations with
60 QUAD4 elements in ABAQUS. The dimensions of the cylinder and boundary conditions are shown
in Fig. 33(a). The cylinder is analyzed for three different microstructures with 40% fiber volume fraction
under plane strain conditions. The microstructural VCFEM models for square edge, square diagonal
and random packings are displayed in Figs. 33(b)-(d).

Figs. 34, 36, 38 show contour plots of the Von Mises stress and Figs. 35, 37 and 39 show the cor-
responding effective plastic strains at macroscopic and microscopic levels at the end of loading. The
macroscopic plots show that for the random packing the stresses and strains depend only on the radial
location (r) and not the angular location () of the point. However, for the square edge and square
diagonal packings, these state variables depend on both the (r) and (6) coordinates, leading to ‘earing’
effects. The results of the square edge and square diagonal packings are mutually rotated by 45° as
expected from the microstructural orientations. Such earing effects are known to be consequences of
anisotropy in the microstructures. In this problem, most macroscopic points are in a triaxial state of state,
as opposed to the previous example where most points were in a uniaxial stress state. This amplifies the
effect of anisotropy in the macroscopic stress and strain distributions. Effective behavior of the random
packing is near isotropic and hence the stress strain distributions are independent of 6 coordinates.

7. Conclusions

In this paper, a multiple-scale computational tool (VCFEM-HOMO) is devised for performing elastic-
plastic analysis of heterogeneous materials with inclusions and voids in the microstructure. The micro-
scopic analysis is conducted with the Voronoi Cell finite element model while a conventional displace-
ment based FEM code (ABAQUS in this paper) executes the macroscopic analysis. Coupling between
the scales is accomplished through the user based UMAT window in ABAQUS, for incorporating the
effective constitutive model from VCFEM by asymptotic homogenization.

The VCFEM developed for porous and composite materials in [26, 27] is used in conjunction with
homogenization for a wide variety of arbitrary microscopic phase distributions. In this model for small de-
formation elasto-plasticity, stress functions are motivated from essential characteristics of micromechanics
by accounting for the heterogeneity shape and influence. This is achieved by transforming any arbitrary
shaped heterogeneity to a unit circle using a mapping similar to the Schwarz-Christoffel conformal
mapping. Stress functions are then constructed in terms of mapped coordinates. The introduction of
micromechanics consideration tremendously enhances VCFEM accuracy for various microstructures at
very moderate computational efforts. The accuracy and efficiency of VCFEM are established by compar-
ing with conventional FEM commercial packages. For a wide range of problems VCFEM delivers very
similar accuracy at a considerably low computational effort. This is evidenced by the drastically reduced
degrees of freedom needed for convergence, compared with the conventional codes. The D.O.E. ratio
varies from as low as 20 for simple microstructures, to even 100 for more complex cases. This translates
into a reduction factor of 15-30 in the CPU time for execution, even with a non-optimized research
code. Furthermore, user effort required to generate the model is much lower for VCFEM than for many
commercial packages.

Numerical examples conducted with VCFEM-HOMO establish the effectiveness of homogenization,
when compared with the FEM calculations with constitutive relations from unit cell and effective con-
tinuum models. They also point out the limitations of assumptions made in the latter methods, and
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emphasize situations when coupled multiple scale analysis becomes necessary. The effect of various mi-
croscopic arrangements on the mechanical response at the two scales are investigated through these
examples. Significant influence is observed in both the microscopic and macroscopic responses. For ex-
ample, the square edge and square diagonal distributions give severe anisotropic effects, while random
distributions are more isotropic at a point in the structure. Multiple scale computations with microscopic
FEM models at each element integration point in the structure are in general quite exhaustive. For com-
plex microstructures, the efficiency of microstructural VCFEM makes it possible to realize computations
of this magnitude in comparison with conventional FEM. The more complex multiple scale models in
this paper took approximately 2-3 CPU hours to run on a CRAY-YMP at the Ohio Supercomputer
Center. Though reasonable, major improvements in efficiency of the scale coupling is presently being
pursued.

In conclusion, the Voronoi Cell finite element model with asymptotic homogenization (VCFEM-
HOMO) emerges as an important tool for analyzing arbitrary microstructures in many materials. It
is easily adapted with commercial packages at the structural scale. and this makes it very attractive.
A shortcoming of the homogenization method in its present form, is however the incorporation of
boundary condition at regions of material discontinuity. Boundary conditions should be applied in the
microstructure and not at the macroscopic level as is presently done. The boundary effect can become
pronounced in some cases, and then homogenization results become less accurate near the boundary
(see [22,23]). Incorporation in VCFEM-HOMO to avoid the boundary effects is presently being pursued
and will be reported in a forthcoming paper.
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