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Abstract—In this paper, Voronoi cells resulting from Dirichlet tessellation of a planar heterogeneous
microstructure are introduced as a unified tool in characterization and response modeling of multiphase
materials. Microstructures with different volume fractions, inclusion concentrations and patterns are
computer simulated, and tessellated to yield a mesh of Voronoi cells. Various characterization functions
of Voronoi cell based geometric parameters are generated. The Voronoi cell finite element method
(VCFEM) is executed for plane strain analysis of the microstructures. These results are used for comparing
measures of geometric and mechanical anisotropy. and for evaluating statistical functions of stresses.

C 1997 Acta Metallurgica Inc.

1. INTRODUCTION

Advanced materials like particle/fiber reinforced
composite materials can improve systems reliability
and reduce life-cycle costs in many engineering
systems through enhanced thermal and mechanical
performance and weight reduction. The degree of
property enhancements depends on the size, shape
and properties of the second phase, as well as on their
spatial distribution within the matrix. It is established
that though the overall elastic response is relatively
less sensitive to the microstructural morphology,
plastic behavior is highly affected by the local
configuration due to nonhomogeneous deformation
of the ductile constituents. Brockenbrough er af. [1]
have concluded that, while both the fiber shape and
distribution affect transverse tensile and shear
deformations at high fiber volume fractions, the effect
of fiber distribution is stronger at lower volume
fractions. Christman et a/. [2] have shown that
clustering has a significant effect in reducing flow
stress and strain hardening, though its effect on
elastic properties is minimal. B6hm ¢t a/. [3] have
demonstrated that the overall flow stress and the
strain difference between phases is dependent on the
continuity of the weaker phase. Additionally, local
morphology of heterogeneities have a definitive effect
on failure properties like ductility, fracture toughness,
fatigue, creep resistance, etc. To take advantage of
the improved attributes of advanced materials and
minimize failure, an understanding of the microstruc-
ture-property relationship is a necessary step in
effective component fabrication, and prediction of
component behavior and life.
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Many analytical micromechanical models, such
as those based on the variational approach [4],
self-consistent schemes [5, 6] and effective mean field
theories [7-10] have evolved within the framework of
small deformation linear elasticity or elasto-plasticity
theory. These models predominantly follow the idea
of eigenstrain based equivalent inclusion methods
and take into account the reinforcement volume
fraction and the aspect ratio. Though reasonably
effective in predicting overall material properties for
relatively simple geometries at low volume fractions,
these methods are incapable of depicting stress/strain
variations. Arbitrary dispersions of multiple phases,
encountered in many advanced materials, cannot be
deterministically treated with these models. Appli-
cations of nonlinear analytical models to many real
materials are even less effective than the linear models
due to nonhomogeneous plastic flow. Local proper-
ties become stress dependent and the overall
constitutive response is influenced by distributions
and shapes of second phase. Another class of
analytical model has evolved in the form of random
medium theories, in which statistical N-point
correlation functions have been used to characterize
composite microstructures [11, 12]. Though novel
from a stereological point of view, these models
do not overcome some of the problems discussed
above.

Shortcomings of analytical models have promoted
the extensive use of computational unit cell models
[2, 13, 14]. that generate the overall material response
through detailed discretization of a representative
material element (RME) in the microstructure.
Effective material properties are ascertained by
assuming macroscopic periodicity conditions on the
RMESs. The vast majority of these models also make
assumptions of local periodicity, implying a uniform
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distribution of heterogenities to curtail computations.
These simplified unit cells bear little relationship to
the actual stereographic features for many materials.
In recent years, Suresh and coworkers [1,2,13],
McHugh et al. [16] and Boéhm and co-workers
[3,17, 18] have made novel progress in modeling
discontinuously reinforced materials with a random
spatial dispersion. In general, large inclusion aggre-
gates require a very high resolution finite element
mesh that leads to enormous computational efforts.
For some special cases, Bohm and Rammerstorfer
[18] have constructed special unit cells and boundary
conditions to avert large computations. Ghosh and
coworkers have developed a microstructure based
Voronoi Cell Finite Element Model (VCFEM)
[19-23], which attempts to overcome difficuities in
modeling materials with arbitrary phase dispersions.
This formulation combines concepts of finite element
methods with the essential requirements of microme-
chanics, to yield an effective material based element.
The VCFEM mesh naturally evolves from the
microstructure by Dirichlet tessellation to generate a
morphology based network of multi-sided Voronoi
polvgons. In VCFEM, each Voronoi cell representing
the fundamental microstructural composition is an
element, and the analysis needs no further discretiza-
tion. Consequently, the effort in generating a
compatible microstructural model is drastically
reduced. Additionally, the computational efficiency is
greatly enhanced due to Voronoi cell elements being
considerably larger than conventional unit cell FEM
elements.

Quantitative characterization of second phase
populations with automatic image analysis tech-
niques forms an important part of comprehending
microstructure—property relationship in hetero-
geneous materials. Pioneering work on quantitative
metallography has been carried out by Richmond
and coworkers [24-27], who have used Dirichlet
tessellations to characterize alloy steels and alumi-
num matrix composites by comparing actual and
computer generated idealized microstructures. More
recently they have characterized three dimensional
(3D) distributions simulated from actual two
dimensional (2D) micrographs by pseudo-Saltykov
transformation [26] and by pair correlation functions
[27]. Everett and Chu [28, 29] have used the Dirichlet
tessellation for determining near neighbor distances,
cell volume fractions (VFs) and radial distribution
functions for computer generated patterns and
compared them with real materials. Pyrz [30-32]
introduced novel parameters and geometric descrip-
tors to stereologically quantify and distinguish
between various nonrandom distributions to
heterogeneous microstructures.

Despite progress in characterization, little has been
done to formally establish the relationships between
functions that link the overall material response with
stereological features like the spatial distribution of
location, size, shape and local VF of constituent
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phases. Important contributions in this area are by
Brockenbrough et @l. {33] and by Pyrz [30, 31]. In
Ref. [33] an Al-Si composite system has been
tessellated for characterization and modeled by
conventional finite element analysis. Analytical
expressions for stress fields have been derived in Refs
{30, 31] for utilization in unique marked correlation

funcrion, which depicts the effect of patterns on

stresses.

The present paper is an attempt to introduce
Voronoi cells as a unified tool in the characterization
and response modeling of complex multiphase
materials through Voronoi cell finite element
analysis. Microstructures with different VFs, in-
clusion concentration and patterns are computer
simulated, and tessellated to yield a mesh of Voronoi
cells. Various characterization functions based on
geometric parameters are generated, measures for
detecting geometric and behavioral anisotropy are
compared and statistical functions of different stress
measures are evaluated. Voronoi cell finite element
analysis is carried out for plane strain implying fiber
reinforced composite microstructures.

2. MICROSTRUCTURE GENERATION AND
CHARACTERIZATION

2.1. Computer generation of planar microstructures

Computer simulated artificial microstructures,
which are considered to be RMEs, are generated to
study the effects of reinforcement distribution,
density and volume fraction on geometric and
mechanical properties. Each representative micro-
structure is limited to a unit (1 x 1) square region and
is assumed to consist of 25, 50 or 100 circular
inclusions of uniform size. The overall inclusion
volume fractions considered are 10.8%, 21.6% or
32.4%. Three different patterns of nonregular and
nonrandom reinforcement dispersions are con-
sidered, resulting in a total of 27 different computer
generated RMEs as depicted in Fig. 1. Classifications
and methods of construction of each distribution are
delineated below.

® Hard core or Strauss model (HC). This model is
generated as a variant of a pure random Poisson
pattern through the imposition of the following two
constraints: (a) no two inclusions are allowed to
overlap and (b) all inclusions are completely
contained within the region. The minimum permiss-
ible distance (MPD) between heterogeneities, and
between heterogeneity surfaces and edges of the
RME frame are prescribed to attain this restriction.
This minimum distance is a function of the inclusion
size and consequently of volume fraction and
population. Scaled values of MPD for various
distributions in the unit square frame are presented
in Table 1. The inclusion diameter (ID) is first
determined based on the desirable volume fraction
(VF) and the number of inclusions (#INC). A
random number generator is then used to disperse the
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Fig. 1. Computer generated microstructures: (a) volume fraction 10.8% with 25 inclusions: (1) HC. (2)
Clus-1, (3) Clus-3: (b) volume fraction 21.6% with 25 inclusions: (1) HC, (2) Clus-1, (3) Clus-3: (¢) volume
fraction 32.4% with 25 inclusions: (1) HC. (2) Clus-1. (3) Clus-3: (d) volume fraction 10.8% with 50
inclusions: (1) HC. (2) Clus-1, (3) Clus-3: (¢) volume fraction 21.6% with 50 inclusions (1) HC. (2) Clus-1,
(3) Clus-3; ( f) volume fraction 32.4% with 50 inclusions: (1} HC. (2) Clus-1. (3) Clus-3: (g) volume
fraction 10.8% with 100 inclusions: (1) HC. (2) Clus-1. (3) Clus-3; (h) volume fraction 21.6% with 100
inclusions: (1) HC, {2) Clus-1. (3) Clus-3; (i) volume fraction 32.4%, with 100 inclusions: (1) HC, (2) Clus-1,
(3) Clus-3.

inclusion centroidal locations with a predetermined
value of MPD. Any event or generation that violates
the MPD requirement is discarded. Too many
consecutive event rejections lead to alteration of the
MPD.

e Single cluster hard core model (Clus-1). This
model is characterized by a decreased average
inclusion MPD, within a subregion of the

otherwise hardcore RME. The size (CLD),
location. number of inclusions within the cluster
(#INC CL) and their minimum permissible distance
(MPD CL) are assessed for each representative
microstructure as delineated in Table 1. An
important criterion of a cluster is that the MPD CL
is much smaller than the MPD as shown in Fig. 1 and
Table 1.
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Table 1. Various parameters used in construction of representative microstructures

VF (%) #CL #INC ID MPD CLD #INC CL MPD CL
10.8 0 25 0.0742 0.0556

10.8 0 50 0.0524 0.0524

10.8 0 100 0.0370 0.0277

10.8 1 25 0.0742 0.0742 0.1484 10 0.0073
10.8 1 50 0.0524 0.0524 0.1571 20 0.0026
10.8 1 100 0.0370 0.0185 0.1850 40 0.0036
10.8 3 25 0.0742 0.0742 0.0961 5 0.0036
10.8 3 50 0.0524 0.0524 0.1048 10 0.0026
10.8 3 100 0.0370 0.0370 0.1110 20 0.0018
21.6 0 25 0.1050 0.036%

21.6 0 50 0.0742 0.0296

216 0 100 0.0524 0.0183

21.6 1 25 0.1050 0.0420 0.1313 6 0.0005
216 1 50 0.0742 0.0371 0.1669 12 0.0018
216 1 100 0.0524 0.0262 0.1702 24 0.0013
216 3 25 0.1050 0.0262 0.1155 4 0.0052
216 3 50 0.0742 0.0371 0.1289 8 0.0004
216 3 100 0.0524 0.0262 0.1178 12 0.0014
324 0 25 0.1285 0.0192

324 0 50 0.0908 0.0159

324 0 100 0.0642 0.0097

324 1 25 0.1284 0.0224 0.1412 5 0.0003
324 1 50 0.0908 0.0182 0.1680 10 0.0002
324 1 100 0.0642 0.0129 0.1606 15 0.0016
32.4 3 25 0.1284 0.0224 0.1284 3 0.0031
324 3 50 0.0908 0.0228 0.1174 6 0.0004
324 3 100 0.0642 0.0129 0.1155 9 0.0003

Volume fraction (VF)., number of clusters (# CL), number of inclusions (# INC). inclusion
diameter (ID). minimum permissible distance between inclusions (MPD), diameter of cluster
(CLD), number of inclusions in cluster (#INC CL), minimum permissible distance between

inclusions in cluster (MPD CL).

o Triple cluster hard core model (Clus-3). This
model i1s generated in the same way as the single
cluster model with three predetermined cluster
locations.

2.2. Dirichler tessellations in micrositructural  dis-
cretization and characterization

Dirichlet tessellation is defined as a subdivision of
a region, determined by a set of points, such that each
point has associated with it a region that is closer to
it than to any other. These regions are termed
Voronoi cells and may be identified as the basic
structural elements of a heterogeneous microstruc-
ture. If Pi(x,), P:(xz), ..., P,(x,) denote a set of n
random points in a bounded region W, the interior
of'a Voronoi cell associated with the ith labeled point
P, is the region D; defined as

D={veWIx—x|<|x—x|V£,PeW. (1)

The aggregate of all such regions D, constitutes the
Dirichlet tessellation in a plane, as shown in Fig. 1.
Each region may be perceived of as the intersection
of open half planes bounded by the perpendicular
bisectors of lines joining the point P, with each of its
neighbors P;. A 2D mesh generator has been
developed for plane section of multiphase materials
in Ref. [34], where automatic discretization into basic
structural elements is based on information on the
domain boundary, and the location, shape and size of
the heterogeneities. Effects of the reinforcement
shape and size are accounted for by a surface based
tessellation algorithm, where edges of Voronoi cells

are generated for points on the surface of the
heterogeneity.

Tessellation of a microstructure into Voronoi cells
is of considerable significance in generating geometric
descriptors to quantify a given morphology. It
naturally identifies regions of immediate influence
for each heterogeneity, and also its neighbors
corresponding to edges of the Voronoi cells. This
facilitates evaluation of parameters like the local area
fractions, near neighbor and nearest neighbor
distances and orientations, which are essential in
quantitative characterization of the microstructure.

2.3. Statistical analysis of computer generated micro-
structures

Microstructural morphology for heterogeneous
materials may be appropriately characterized by
functions of shapes, sizes and spatial distributions of
the second phase. To classify spatial distributions, it
is important to identify functions and methods that
can distinguish between regular, random, nonregular,
nonrandom or clustered patterns. Important studies
in quantitative metallography by Richmond and
co-workers [24, 25], Pyrz [30, 31] and Everett and
Chu [28,29] have suggested quantification of the
nature of inter-inclusion/second phase distributions
as a means of characterizing microstructural mor-
phology. The quantified functions are compared with
known distribution functions for random or regular
distributions to bring out the distinction, and serve
as a divider between aggregated and more
regular patterns. For example, Richmond and
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co-workers [24, 25] have considered the distribution
of nearest neighbor distances, and mean distances
from near neighbors, in categorizing microstructural
patterns. Everett [29] has effectively used radial
distribution functions or RDFs for stereological
analysis of patterns to classify actual composite
microstructures. Pyrz [30-32] has also suggested
investigations by various distance based parameters
or by tessellation cell related parameters. He has
concluded that the second order intensity function
K(r), which is similar in significance to RDFs, is the
most informative descriptor of dispersion patterns. In
the light of arguments in stereological studies, a
number of geometric descriptors as suggested in Refs
[24, 25,29-31] are considered for the patterns in
Fig. 1.

2.3.1. Mean and standard deviation of microstruc-
tural parameters for various patterns. For each
microstructural pattern, the statistical mean and
standard deviation of the local area fraction and near
neighbor distances are computed and tabulated in
Table 2. The local area fraction is measured as the
ratio of the area of the inclusion size to that of the
associated Voronoi cell. Near neighbor distances are
determined as the distance between centers of
inclusions that share a common Voronoi cell edge.
The average number of near neighbors for each
pattern (AVNUMR) increases with the number of
inclusions. This average is, however, always less than
6, which is the average number of Voronoi edges for
a purely Poisson distribution of points. The mean
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patterns are always larger than the overall mean area
fraction for the RME. For hard core patterns at all
volume fractions, the mean local area fraction does
not change significantly with the number of
inclusions, and the standard deviation (SDAF) is
considerably smaller than the mean. The mean local
area fraction increases with clustering, indicating
dominance of area fractions in the clusters. A
relatively large scatter in values is reflected by an
increased standard deviation. The mean near-
neighbor distance (MNND) between centers on the
other hand. decreases with increased clustering
especially at smaller area fractions. Concurrently, the
standard deviation (SDNND) increases. MNND also
decreases with an increase in the number of
inclusions. Following the proposition made in Spitzig
et al. [24], deviation from complete randomness is
also investigated through two ratios, MRNND and
VRNND, shown in Table 2. MRNND corresponds
to the ratio of the observed mean nearest neighbor
distance to the expected mean for a purely random
Poisson point distribution, and VRNND is the
corresponding ratio of variances. The expected mean
E(r) and variance E(s*) of nearest neighbor distances
for the Poisson distribution are established in the
literature [24, 28] as

—TT

o N —12 R _L
E(l)—0.4</—4‘> , E(s7) = i

=

where N/A is the area density of points. For relatively

local area fractions (MAF) for all distribution small volume fractions (approximately 5%),
Table 2. Local measures characterizing the microstructural morphology
VF (%) #CL #INC MAF SDAF AVNUMR MNND SDNND MRNND VRNND
10.8 0 25 0.1131 0.0224 4.56 0.1592 0.0171 1.5918 0.1065
10.8 0 50 0.1125 0.0212 5.00 0.1206 0.0106 1.6984 0.0828
10.8 0 100 0.1169 0.0287 5.30 0.0800 0.0095 1.6003 0.1310
10.8 1 25 0.1524 0.1083 4.72 0.1438 0.0474 1.4382 0.8207
10.8 1 50 0.1755 0.1408 5.12 0.1048 0.0383 1.4758 1.0742
10.8 1 100 0.1676 0.1151 5.44 0.0684 0.0216 1.3680 0.6836
10.8 3 RAY 0.1501 0.0802 4.72 0.1207 0.0419 1.2066 0.6388
10.8 3 50 0.1726 0.1299 524 0.0903 0.0363 1.2713 0.9666
10.8 3 100 0.1988 0.1562 5.46 0.0658 0.0263 1.3169 1.0265
21.6 0 25 0.2231 0.0394 4.56 0.1659 0.0140 1.6589 0.0713
21.6 0 50 0.2249 0.0425 3.04 0.1182 0.0103 1.6634 0.0779
216 0 100 0.2260 0.0445 5.30 0.0817 0.0076 1.6348 0.0840
21.6 1 25 (.2453 0.0971 4.64 0.1632 0.0298 1.6321 0.3256
21.6 1 50 (1.2386 0.0794 512 0.1162 0.0177 1.6386 0.2289
21.6 1 100 0.2403 0.0883 5.32 0.0830 0.0127 1.6598 0.2349
21.6 3 25 0.2376 0.0755 4.80 0.1495 0.0300 1.4954 0.3285
21.6 3 50 0.2448 0.0890 512 0.1105 0.0242 1.5565 04272
216 3 100 0.2440 0.0936 532 0.0797 0.0143 1.5940 0.3001
324 (] 25 0.3414 0.0706 4.56 0.1699 0.0189 1.6987 0.1308
324 0 50 (.3323 0.0515 5.00 0.1177 0.0062 1.6580 0.0284
324 0 100 0.3344 0.0558 522 0.0841 0.0061 1.6827 0.0553
324 1 25 0.3400 0.0747 4.04 0.1615 0.0132 1.6154 0.0634
324 1 50 0.3455 0.0868 5.00 0.1189 0.0122 1.6747 0.1094
324 1 100 0.3354 0.0601 5.30 0.0853 0.0070 1.7069 0.0729
324 3 25 0.3514 0.0935 4.56 0.1619 0.0124 1.6191 0.0565
324 3 50 0.3420 0.0792 5.00 0.1184 0.0164 1.6682 0.1971
324 3 100 0.3385 0.0688 5.28 0.0836 0.0082 1.6716 0.0995

Volume fraction (VF), number of clusters (# CL). number of inclusions (# INC), mean local area fraction (MAF), standard deviation
of local area fraction (SDAF). average number of near neighbors (AVNUMR), mean center-to-center near neighbor distance
(MNND), standard deviation of near neighbor distance (SDNND), observed mean/expected mean nearest neighbor distance

(MRNND). observed variance;expected variance (VRNND).
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deviations of the ratio of means (MRNND) and the
ratio of variances (VRNND) from unity are known
to distinguish random sets from clusters. Microstruc-
tures considered in this paper, however, have much
larger volume fractions, and the relationship pro-
posed in Ref. [24] do not hold exactly. Specifically,
the value of the MRNND for all volume fractions is
found to be greater than unity. Nevertheless, values
of the MRNND decrease with increased clustering, a
trend that is expected for clusters in a superimposed
background of random points. This trend i1s much
stronger at the lower volume fractions. Values of the
VRNND on the other hand are less than unity,
except for clustered patterns at low volume fractions.
This indicates clusters in a background of random
distribution. At higher volume fractions the distinc-
tion between hard core and clusters is less acute, as
seen in the pattern diagrams.

2.3.2. Cumulative distribution and probability den-
sity functions. The cumulative distribution function
F(x) represents the probability that a random
variable X, e.g. the local area fraction or nearest
neighbor distance, assumes a value smaller than or
equal to x. The probability density function f(x)
refers to the probability of a variable X assuming a
value x and is expressed as f(x) = dF(x);/dx. For
nearest and near neighbor distances in actual
materials, Pyrz [30] has evaluated these functions to
yield conclusive information about the distributions,
while those for real materials have been plotted in
Spitzig et «l. [24]. Cumulative distribution and
probability density functions of the local area
fraction and nearest neighbor distance are plotted for
all the microstructures, and a few are depicted in
Figs 2 and 3. The cumulative distribution is
normahized with respect to the total number of
inclusions in the unit square domain.

Local Area Fraction (A)

Figures 2(a), (c), (e) and (g) shows the cumulative
distribution functions F(A4), and Fig. 2(b), (d), (f) and
(h) shows the density distribution functions f{4) for
25 and 100 inclusions at 10.8% and 32.4% volume
fractions, respectively. At lower volume fractions
with 25 inclusions, F(4) shows significant differences
between the hard core (HC) and each of the clustered
(Clus-1 and Clus-3) patterns. especially with an
increase in the local area fraction, which increases
considerably with increased clustering due to a wider
dispersion. The high spikes in the density distribution
function f{A4) for the HC pattern at 10.8% VF
[Fig. 2(b)] are consequences of the steep gradients due
to pronounced uniformity in the local area fraction.
Intensity of spikes in f{A4) diminishes with clustering,
reflecting lower gradients in F(A4). The difference in
F(A4) for the two clustered patterns reduces as the
number of inclusions increases to 100 [Fig. 2(¢)]. This
is indicative of a similarity in local area fraction
distribution for higher inclusion concentration. The
HC pattern is, however, quite different in Fig. 2(c)
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and Fig. 2(c). (d). The difference between the HC and
clustered patterns for F(A4) and f(4) plots sharply
reduces as the volume fraction is increased to 32.4%,
indicating relatively less distinction between distri-
butions at this VF.

Center-10-Center Nearest Neighbor Distance (d)

Figures 3(a), (¢), (¢) and (g) show the cumulative
distribution functions F(d), while Fig. 3(b), (d), (f)
and (h) show the density distribution functions f(d)
for 25 and 100 inclusions at 10.8% and 32.4% VF,
respectively. As with local area fractions, the
distinction between F(d) and f{(d) for the three
patterns diminishes with increasing VF and increas-
ing inclusion concentration. The near neighbor
distance in the clusters is significantly lower than that
in the HC patterns seen in Fig. 3(a). The smallest
distance d for Clus-3 is slightly less than that for
Clus-1. The plateau in F(d), and consequently the
zero values in f(d), for the clustered patterns
correspond to relatively large distances for which a
near neighbor does not exist. This plateau decreases
with higher VFs and inclusions. Spikes in f{(d)
correspond to the number of neighbors at nearly
similar distances, and the wide plateaus correspond
to uniformly increasing distances. With increase in
inclusion number at lower VFs, the distinction
between the clustered patterns diminishes but the
difference with HC remains. At 32.4% VF with 25
inclusions, F(d) and f(d) for the HC pattern have
prolonged tails due to large near neighbor distances.
The difference in lowest values of d is, however,
reduced and relatively narrower plateaus occur at
shorter distances in clustered patterns. All patterns
possess similar tails as the number of inclusions
increases to 100.

2.3.3. Second order intensity function and pair
distribution function. The second order intensity
function K(r) has been demonstrated to be one of the
most informative descriptors of morphological
patterns by Pyrz [30, 31], because of its sensitivity to
local perturbations in otherwise similar distributions.
[t has the significance of a radial distribution function
[29] and is defined as the number of additional points
or inclusion centers expected to lie within a distance
r of an arbitrarily located point, divided by point
density. For observations within a finite window W
of area A, K(r) corrected due to edge effects may be
expressed as (see Ref. [30])

A

K(r) =

=

N 1;\ (r)
: El R, (2)
where N is the number of points in W, I(r) is the
number of points in the circle with center at one of
the points and radius r, and R, is the ratio of the
circumference of a circle of radius r inside W to the
entire circumference. Construction of the K(r)
function is illustrated in Fig. 4. For a given r, I(r)
is calculated for each inclusion by counting the
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Fig. 2. Cumulative distribution functions and probability density distribution functions for local are a
fraction: (a) and (b) for 25 inclusions at 10.8% VF, (¢) and (d) for 100 inclusions at 10.8% VF, (e) and
(f) for 25 inclusions at 32.4% VF, (g) and (h) for 100 inclusions at 32.4% VF.
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Fig. 4. Schematic diagram for generating the second order
intensity K(#) and marked correlation M(r) functions.

number of additional inclusion centers that lie
within a concentric circle of radius r around the
inclusion. For example, /(r) is 11 in Fig. (4) for
r=r. For circles protruding beyond the RME
window, [, (r) is divided by R, to compensate for the
bounded domain. The procedure is repeated for all
inclusions at each value of r to obtain K(r) by
equation (2). Values of K(r) for various distributions
may be compared with that for a pure Poisson
distribution of points. known to be nr°. The pair
distribution function g(r), on the other hand,
corresponds to the probability g(r) d(r) of finding an
additional point within a circle of radius dr and
centered at r. where two points are located at r = 0
and r=r, respectively. This is mathematically
expressed as

1 dK(r)
gtr) =5 450 3

Once K(r) is plotted as a function of r, dK(r)/dr is
numerically evaluated to obtain g(r). Contrary to
K(r), which discriminates between patterns, g(r)
quantifies the likelihood of occurrence of near
neighbor distances. For a pure Poisson pattern, g(r)
assumes a unit value, signifying equal likelihood in
occurrence of near neighbor distances. Figures 5 and
6 illustrate K(r) and g(r) plots for all microstructural
patterns considered, as r varies from 0 to approxi-
mately a third of the window size.

At lower VFs (10.8%) and a low inclusion
concentration (25), K(») for the clustered patterns lie
above that for the Poisson pattern and diverges from
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it when clustering increases. The hard core pattern,
though, remains mostly below the Poisson curve, on
account of the additional nonpenetrability constraint.
As the VF increases (21.6 and 32.4%) for the same
number of inclusions, the distinction between
nonclustered and clustered patterns diminishes as
seen in Figs 5(d) and (g). Divergence from the
Poisson pattern is much less pronounced for the
clusters. It is interesting to note that the minimum
inter-inclusion distance for clustered patterns ap-
proaches the corresponding distance for hard core
patterns 0.1375 at higher VFs. With larger inclusion
populations (50 and 100}, K(r) for hard core patterns
tends to be larger than that for Poisson patterns for
a much larger range of r, with reduced minimum
inter-inclusion distance (0.1163 for 50 and 0.0788 for
100 inclusions). This indicates that as the inclusion
size decreases, so do the near-neighbor distances for
the hard core patterns. As seen from Fig. 5(i) at high
VF and inclusion number, it is virtually impossible to
distinguish between patterns and the K(r) is larger
than that for the Poisson distribution for a large
range of r.

From g(r) plots in Fig. 6, observations made with
K(r) are further enhanced. Local maxima indicate
that the most frequent distances and local minima
correspond to the least frequent distances between
patterns. For example, peaks in g(r) at low r values
are very pronounced for the Clus-3 pattern at 10.8%
VF [Fig. 6(a), (b) and (c)]. A distance close to 0.09
is frequently observed in Clus-3 and Clus-1
distributions, but its intensity of occurrence is
significantly larger for the former distribution. These
spikes indicate that the frequencies in clustered
patterns are very high compared with the Poisson
pattern at low r’s, but are much reduced at higher ’s.
Difference in frequencies between patterns are
minimal at high VFs with a high inclusion population
[Fig. 6(i)]. Also, as with the K(r) function, the
minimum r for the hard core pattern decreases with
increase in inclusions. It is interesting to note from
Fig. 6(d), (a) that the peak frequencies reduce
from 10.8% to 21.6% VF, and increase again at
32.4% VF.

3. MICRO-MECHANICAL MODELING WITH
VDFEM

3.1. The Cell  Finite

(VCFEM)

The Voronoi Cell finite element method for small
deformation elastic-plastic analysis of hetero-
geneous materials has been successfully developed in
Refs [19-21], and is briefly presented here. Consider
a typical representative material element Y, tessel-
lated into N Voronoi cells. The matrix phase in
each Voronoi cell Y, is denoted by Y, and the
heterogeneity is denoted by Y.. The matrix—hetero-
geneity interface ¢ Y, has an outward normal n°, while

Voronoi Element  Model
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Fig. 5. Second order intensity function K(r) for: (a) 25 inclusions at 10.8% VF, (b) 50 inclusions at 10.8%

VF, (c) 100 inclusions at 10.8% VF. (d) 25 inclusions at 21.6% VF, () 50 inclusions at 21.6% VF, ()

100 inclusions at 21.6% VF, (g) 25 inclusions at 32.4% VF, (h) 50 inclusions at 32.4% VF, (i) 100
inclusions at 32.4% VF.

n° is the outward normal to the element boundary
0Y.. In an incremental finite element formulation for
rate independent plasticity, let ¢ be an equilibrated
stress field with a strain field e(s, load history), and
let w be a compatible displacement field on the
element boundary at the beginning of an increment.

Also let Ac correspond to an equilibrated stress
increment in 7,, Au to a compatible displacement
increment on ¢Y,, and AT to a traction increment on
the traction boundary I'.,. The incremental problem
is solved by using a two field assumed stress hybrid
variational principle, derived from an element energy
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Fig. 6. Pair distribution function g(r) for: (a) 25 inclusions at 10.8% VF, (b} 50 inclusions at 10.8% VF,

(c) 100 inclusions at 10.8% VF. (d) 25 inclusions at 21.6% VF. (e) 50 inclusions at 21.6% VF, () 100

inclusions at 21.6% VF, (g) 25 inclusions at 32.4% VF. (h) 50 inclusions at 32.4% VF. (i) 100 inclusions
at 32.4% VF.

functional as

~f (T + AD*(u + Au) dT’
I (A6, Au) = —J AB(o. Ac)dY — f e:AedY fr
Z. Y _J (6" + A¢" — ¢°
+j (6 + Ao)'n“(u+ Au) ¢Y B
(RN

— Aoy (0 + Au) ¢Y (4)
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where Au’ is the displacement of the interface and AB
is the increment in element complimentary energy.
Superscripts m and ¢ correspond to variables in the
matrix and the heterogeneity within each Voronoi cell
element. The energy functional for the entire domain
is obtained by adding each element functional at
IT =2 II. Independent assumptions on stress
increments A¢ are made in the matrix and the
heterogeneity using stress functions ®(x, y), which
result in stress expressions as

(87} = [P (x, A" 5)

where the {AB}’s correspond to a set of yet
undetermined stress coefficients and [P] is a matrix of
interpolation functions. To add to the element
efficiency, stress functions are chosen to account for
the shape of the heterogeneity near the interface, and
also to facilitate traction reciprocity at the interface.
Compatible displacement increments on the element
boundary ¢Y. as well as on the interface ¢Y., are
generated by interpolation in terms of generalized
nodal values. The displacement increments on the
clement boundary and interface may then be written
as

e} = (L) 8q ) ®

where {Aq} and {Aq‘} are generalized displacement
increment vectors on ¢Y, and 2Y., and [L] is an
interpolation matrix. Substituting element approxi-
mations for stresses (5) and displacements (6). in the
energy functional (4), and setting the first variations
with respect to the stress coefficient Af™ and Af¢
respectively to zero, results in the following two weak
forms of the kinematic relationships:

f [P]'{e + Ae] dY = J [P]'[0][L'] d Vi Aq}
Y 7Y,

- J [P]n][Le] d Y{Aq]

«

j [P]e + Ae} dY = -[ [P n°][L] d Y {Aq‘}.
¥ oY,

Setting the first variation of the total energy
functional with respect to Aq and Aq° to zero, results
in the weak form of the traction reciprocity
conditions as

J (LTTP"1dY 0

BB

—f LR dY f LTWTPTdY

f (L] (T + At} dY
‘Bm + Aﬁm _ AY T
{ﬁ‘ +Ap } =X (0} - @
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For a rate independent elastic—plastic material
following J, flow theory, the nonlinear finite element
equations (7) and (8) are solved for the stress
parameter increments (Af™, Af°) and nodal displace-
ment increments (Aq, Aq°).

3.2. Asymptotic homogenization for multiple scale
analysis

In real heterogeneous materials. dimensions of the
RME are typically very small in comparison with the
dimensions of the body, and the ratio of microscopic
and macroscopic scales is represented by a very small
positive number ¢. A high level of heterogeneity in the
microstructure causes a rapid variation in evolution-
ary variables like deformation and stresses in a small
neighborhood ¢ of a macroscopic point x. This
corresponds to a microscopic scale (y = x/¢) and
consequently all variables are assumed to exhibit
dependence on both length scales, i.e. @ = B(x, x/e).
In homogenization theory [19,22], a periodic
repetition of the microstructure about a macroscopic
point x is assumed. For small deformation elastoplas-
ticity. the periodic displacement rate in an RME (Y)
is approximated by an asymptotic expansion with
respect 1o parameter ¢:

0(x) = (x, y) + cb'(x, y) + CU(x, y)

Foly= ©

X
¢
From the rate form of the constitutive equation, the
stress rate tensor 6 can then be expressed as
U;,:?G:;+J;1,»+EO',‘,+('O',},‘... (10
Substituting in the rate equilibrium equation, the
microscopic kinematic and equilibrium equations
may be delineated as

2,40 A -0
Gl =y 52, i =z 52 (kinematics) (1)
Cx; cx
and
0dy () _ e
5= 0 (equilibrium). (12)
Ay

In equation (11), 6§/ is a Y-antiperiodic function and
7t 1s a Y-periodic function representing characteristic
modes of the RME. From equation (11) the

microscopic constitutive relations are written as

(‘;kl

5’5/()’) = E:/pm[rgin + (';_)f,ﬁ:|

(13)
where Ej, is the constituent tangent modulus and 77
is a fourth order identity tensor. The mean of
equation (13) yields the homogenized elastic—plastic
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tangent modulus, for use in the macroscopic analysis,
in the form

1
£ =6 = —J ' dy
v,

1 oyt
= | E w4 Yhp i
Y] ﬁ '“"“(T"“' o) 4Y

The mean of equations in Y yields the macroscopic
form of the governing and constitutive equations for
the elastic—plastic heterogeneous material as

0% :

(14)

—1_,”2 ~Ji in Qo

CX;

3, = EN ekl (15)
where  Quuewe corresponds to the macroscopic

domain, £(=<(é'>) and @° are the averaged macro-
scopic stress rate tensor and the displacement rate,
respectively.

3.3. Incorporation in a macroscopic analysis module

The microscopic Voronoi cell finite element
module is incorporated in a macroscopic analysis
module ABAQUS, with the interface for homogen-
ized material properties created through the user-
prescribed subroutine UMAT in ABAQUS. The
resulting analysis code is called VCFEM-HOMO.
The material constitutive relation at each integration
point of macroscopic ABAQUS elements is input
through homogenization, from the microscopic
VCFEM analysis with periodicity boundary con-
ditions. The VCFEM module is executed to evaluate
microscopic stress increments Ae‘, and the instan-
taneous homogenized tangent modulus E}}, from
given values of macroscopic strain & + A€, as detailed
in Ref. [19].

4. STRESS ANALYSIS AND EFFECTIVE
PROPERTIES

Numerical simulations are conducted for all the
generated microstructures with the multiple scale
finite element code VCFEM-HOMO. The 2D
analysis for evolution of elastic -plastic stress—strains
and overall properties is restricted to plane strain.
Material properties are for an Al O;/Al composite.
where the ALQO; fiber is assumed to be elastic while
the aluminum matrix is an elastic-plastic material
with the following properties:

99% crystalline «-alumina(ALOs) coated with
silica fiber: Young's Modulus (£.) = 344.5 GPa,
Poisson’s ratio (v.) = 0.26.

2wt% Li-Al binary alloy matrix: Young’s
Modulus (E,) = 68.9 GPa, Poisson’s ratio (vn):
0.32, initial yield stress (Y;): 94 MPa, post yield

flow rule:
P L L S
T EL Yo
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4.1. Elastic—plastic analysis of various microstruc-
tures

Each of the 27 microstructures is subjected to an
overall macroscopic strain of 1% in the horizontal
direction. Contour plots of Von Mises stresses and
effective plastic strains at the end of loading are
depicted for a few representative realizations in
Fig. 7. Stresses are uniformly high in all brittle
inclusions of the hard core pattern. However for
clustered patterns, inclusion stresses within clusters
are considerably higher than those elsewhere. Also,
the overall stress levels rise with clustering. Effective
plastic strains are concentrated near the inclusion—
matrix interface and are distributed uniformly for
hard core patterns. For clustered patterns, however,
they are significantly higher inside clusters.

4.2. Anisotropy from geometric and response con-
siderations

The majority of constitutive methods for hetero-
geneous materials assume isotropy in macroscopic
response. This leads to a considerable difference
between the experimentally observed and simulated
behavior of structures. Microstructural morphology
has a strong effect on directional dependence in
material behavior. Since the constituent material
properties are individually isotropic, a strong
correlation is expected between anisotropies arising
from geometric dispersion and mechanical response.
In this section, two geometric measures for detecting
anisotropy are verified against the anisotropic elastic
tangent moduh obtained from the VCFEM-HOMO
analysis. These descriptors for identifying anisotropy
in nonrandom-dispersions are discussed next.

4.2.1. Angular position of nearest neighbor. His-
tograms depicting the angular relationship between a
baseline and the vector joining nearest neighbors, has
been proposed as a qualitative measure of the
anisotropic distribution in Refs [24, 35]. While the
angular distribution is expected to be nearly uniform
for a Poisson pattern due to equal likelihood of all
angles, dominance of certain angular orientations will
prevail in some aligned patterns. Figure 8 depicts a
few representative histograms covering a range from
0 to 907, with subranges of 10°. The histograms
may be intuitively classified into a few general
patterns. viz.

(a) Uniform distribution (UD). The frequency of
nearest neighbor occurrence is roughly uniform for
all 10" subranges, indicating a near isotropic
distribution of inclusions. For example, Fig. 8(a)
(25 inclusions, 21.6% VF, HC) and Fig. 8(g)
(100 inclusions, 32.4% VF, Clus-3) are among the
various patterns that exhibit this behavior.

(b) Random distribution (RD). For this set of
histograms, the frequency of occurrence of nearest
neighbors varies randomly for all angles, and hence
they suggest a nonpreferential overall dispersion.
Random angular dispersions are predominantly
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Fig. 7. Von Mises stress (in GPa) and effective plastic strain distribution at 1% overall strain, for 25
inclusions at 10.8% volume [raction: (a) and (b) HC pattern, (¢) and (d) Clus-1 pattern. () and ( ') Clus-3
pattern.

observed in lower VFs (10.8%) and a lower
number of inclusions (25) for all levels of cluster-
ing. This is shown in Fig. 8(b) (25 incls, 10.8%
VF, HC) and Fig. 8(c) (25 incls, 10.8% VF,
Clus-3).

(¢) Strong preferred orientation (SPQO). Dominance
of a single angular orientation due to a preferred
alignment of inclusions in a particular direction

describes this set of histograms. This anisotropic
behavior is characterized by spikes of large numbers
of inclusions at given angles, and is generally
observed in microstructures with fewer inclusions
(25) and a higher VF (32.4%). as depicted in Fig. 8(d)
(25 incls, 32.4% VF, HO), Fig. 8(e) (25 incls, 32.4%
VF, Clus-1), and Fig. 8(f) (25 incls. 32.4% VF,
Clus-3).
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Fig. 8. Histogram of angular relationship between nearest-neighbors of inclusions.
(d) Gradually  increasing  preferred  orientation  while for high VFs, it is predominant for the single
(GIPO). This morphology exhibits a gradual cluster patterns.

transition towards a preferred orientation and is
characterized by continuously increasing or decreas-
ing graded histograms. It is a strong indicator of
anisotropic dispersion, and is frequently observed in
larger inclusion concentration (50-100) and higher
VF (21.6--32.4%) microstructures with clustering, as
illustrated in Fig. 8(h) (50 incls, 32.4% VF, Clus-1)
and Fig. 8(i) (100 incls, 21.6% VF. Clus-1).

Due to a lack of quantitative delineation. intuitive
classification of all patterns into the categories
mentioned above is presented as ANG in Table 3.
Isotropy in dispersion is generally observed for
patterns at lower volume fractions. At moderate VFs,
anisotropy increases with the number of inclusions,

4.2.2. Mean Intercept Aspect Ratio (MAR = e/
boean). A measure of the anisotropy defined as the
ratio of mean intercept lengths in two orthogonal
directions was introduced in Refs [24, 25]. In this
section. the above definition has been modified to
accommodate intercept variations at different orien-
tations. Intercept lengths are determined at uniform
10" angular increments by measuring the length of a
line that passes through the inclusion centroid,
between cell edges at this orientation. The intercepts
are averaged for all Voronoi cells in the microstruc-
tures. The mean intercept lengths are then plotted as
a function of angle (0-360 ). An equivalent ellipse is
subsequently constructed by equating the zeroth, first
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Table 3. Local parameters characterizing overall anisotropy of microstructure

VF (% #CL #INC ANG MAR A A on 012 OI3

10.8 0 25 RD 1.0757 0.99807 0.99987 1.00026 1.00014 0.99832
10.8 0 50 RD 1.0500 0.99882 1.00019 0.99963 0.99980 0.99848
10.8 0 100 RD 1.0380 0.99867 0.99975 1.00050 1.00027 099913
10.8 1 25 RD 1.1113 0.99720 0.99986 1.00029 1.00015 0.99747
10.8 1 50 RD 1.1218 0.99665 1.00013 0.99975 0.99987 0.99642
10.8 1 100 uD 1.0268 0.99821 0.99983 1.00035 1.00019 0.99853
10.8 3 25 RD 1.0718 0.99823 1.00022 0.99957 0.99978 0.99783
10.8 3 50 SPO 1.1238 0.99749 0.99980 1.00039 1.00020 0.99785
10.8 3 100 GIPO 1.0407 0.99997 0.99913 1.00174 1.00091 1.00158
216 0 25 ubD 1.0963 0.99799 1.00216 0.9956% 0.99765 0.99412
216 0 50 SPO 1.0513 0.99386 0.99967 1.00067 1.00036 0.994406
21.6 0 100 GIPO 1.0309 0.99932 0.99975 1.00049 1.00022 0.99977
21.6 1 25 RD 1.0585 0.99783 1.00075 0.99849 0.99918 0.99647
216 ] 50 GIPO 1.0433 0.99730 0.99722 1.00558 1.00387 1.00233
21.6 1 100 GIPO 1.0686 0.99062 0.99806 1.00388 1.00209 0.99408
21.6 3 25 RD 1.0563 0.99477 0.99898 1.00205 1.00111 0.99660
216 3 50 ubD 1.0407 0.99569 0.99902 1.00197 1.00108 0.99745
216 3 100 GIPO 1.0315 0.99637 1.00059 0.99881 0.99936 0.99530
324 0 25 SPO 1.0520 0.99248 0.99836 1.00329 1.00186 0.99534
324 0 50 GIPO 1.0463 0.98882 0.99798 1.00404 1.00228 0.99233
324 0 100 GIPO 1.0489 0.98907 0.99842 1.00316 1.00178 0.99181
324 1 25 SPO 1.0414 0.99734 1.00226 1.00069 1.00039 0.99978
324 I 50 GIPO 1.0329 0.99874 0.99795 1.00412 1.00233 1.00235
324 1 100 SPO 1.0250 1.00339 1.00456 0.99091 0.99348 0.99543
324 3 25 SPO 1.0549 0.98262 1.00031 0.99939 0.99965 0.98210
324 3 50 SPO 1.0822 0.98557 1.00407 0.99190 0.99541 0.97861
324 3 100 UD 1.0357 0.99175 1.00504 0.98997 0.99253 0.98312

Volume fraction (VF). number of clusters (#CL). number of inclusions ( # INC), angular orientation index (ANG). mean aspect
ratio (MAR = L™ L™") anisotropy index in xx-direction (A4,, = EX./E,), anisotropy index in xy-direction (4., = Eh,,/EW"),

and second moments of the actual plot to those of the
ellipse. For each ellipse the ratio of the major axis to
the minor axis (MAR = @ueun/bmean) 18 then computed
and is tabulated in Table 3. For an isotropic
distribution of inclusions this ratio (MAR) is
expected to be unity. The mean difference in MAR
from unity is calculated to be 0.0577 with a standard
deviation of 0.028. A deviation value of 0.045 from
unity (which is lower than the mean) is intuitively
selected as a criterion to differentiate between
isotropic and anisotropic patterns. A comparison of
inferences from the intercept aspect ratio with that
from the angular position reveals that though the two
measures concur for many microstructural mor-
phologies, they also differ in a few cases. For
example, isotropy at lower VFs is dominant for the
ANG classification but is not so strong with this
descriptor. For higher VFs, more agreement exists
between the two measures.

4.2.3. Effective tangent modulus E!,. The hom-
ogenized elastic tangent modulus £}, in equation (14)
is obtained as an orthotropic tensor from VCFEM-
HOMO. Various distinguishing parameters are
evaluated for determining the degree of anisotropy
resulting from dispersion of the heterogeneities.
Presented in Table 3, these may be subdivided into
two classes, viz.

(a) Deviation from isotropic marerial properties.
Equivalent isotropic components of the elasticity
tensor, e.g. Lamé constants are evaluated by equating
strain energies for the orthotropic and idealized
isotropic materials. Two equations needed for the

orthotropy index (OI1 = Ef, E%,). orthotropy index (OI2 = EM_/E™"), orthotropy index OI3 = Ef  jO.5(EY, — EY ).

Lamé constants are obtained for conditions of (i)
biaxial stretching corresponding to a hydrostatic
loading state and (ii) biaxial tension-compression
corresponding to a deviatoric loading state. An-
isotropy indices A,, = E%, /EXy and A, = EV JESY
are ratios of the respective components in the
orthotropic tensor to the idealized isotropic tensor.
To distinguish between isotropy and anisotropy, a
deviation measure DEVI = (1 — {4, + A.}) is
selected. If DEV1 < 0.001, then the response is
intuitively classified as isotropic. It is emphasized that
this measure is chosen arbitrarily to create a
distinction, and is not a conclusive dividing line
between anisotropy and isotropy. It is generally
observed that this measure yields anisotropy with
clustering (Clus-1 and Clus-3), especially at low and
moderate VFs. Anisotropy is dominant at higher VFs
for all patterns.

(b)Y Deviation from isotropic behavior. Orthotropy
indices OIl = EN JE%... OI2=EL /EY., and
OI3 = EM_/j0.5(EY. — EY.)) represent the behav-
ioral deviation of the homogenized orthotropic
elasticity tensor from isotropy. For this case also, the
deviation measure DEV2 = (1 — {{OIl + OI2}), if
<0.001, intuitively classifies the behavior as
isotropic. According to this measure, isotropy
dominates at lower VFs while anisotropic behavior
rules at higher VFs.

Comparison of all the four measures indicates that
the geometric measures (1) and (2) concur in 44% of
all cases, and response measures (3a) and (3b) agree
with each other in 67% of all cases. Inference from
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all measures concur in more than a third of all cases,
and three out of four measures produce the same
conclusion in approximately 67% of all cases. In
general, criterion (2) is found to agree more with (3a).
which is considered to be a good indicator of
anisotropic behavior.

4.3. Marked correlation
functions for stresses

and  probability  density

An important criterion in determining length scales
that characterize a microstructural representative
material element (RME), is the influence of local
morphology on the microscopic stress/strain distri-
bution. These stress/strain levels and distributions are
sensitive to perturbations in local morphology, and
consequently functions that distinguish between their
variations for different microstructural patterns can
provide important insights on the microstructure-
property correlations. Pyrz [31] has introduced a
novel "marked correlation function™ for multivariate
characterization of patterns, by associating field
variables, e.g. stresses. with each particle in a
heterogeneous domain. A mark may correspond to
any feature associated with a point or heterogeneity
in the domain. The marked correlation function for
a heterogeneous domain A containing N inclusions is
mathematically expressed as [31, 36]

where

1 4 ¢
H(r) = pe VZ A; iy (r). (16)

Here m, denotes a mark or a variable associated with
the ith inclusion, &' is the number of inclusions which
have their centers within a circle of radius r around
the ith inclusion, m;; are the marks for those
inclusions, and m is the mean of all marks. H(r) is
termed the mark intensity function and g(r) is the
pair distribution function. From its definition, M(r)
establishes a relationship between the position and
the associated variables for heterogeneities.

From considerations of microscopic evolution, the
marks are identified with each of the four state
variables, viz. (a) the maximum principal stress in
each inclusion. (b) the maximum principal stress,
(c) the maximum hydrostatic stress and (d) the
maximum Von Mises stress in the matrix region, for
regions associated with each inclusion. The associ-
ated region corresponds to the interior of each
Voronoi cell. The maximum values are evaluated
from values at several sampling points within each
Voronoi cell. The construction of M(r) follows from
that of K(r) as shown in Fig. 4. For every r, my () in
equation (16) is evaluated for each inclusion by
associating each inclusion with the maximum stress
value in that Voronoi cell, from which H(r) is
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"
(%)
(8

evaluated. H(r) is then plotted as a function of r and
numerically differentiated to obtain M(r) in equation
(16). Plots of M(r) for 10.8% VF with 25 inclusions
and 32.4% VF with 100 inclusions are illustrated in
Fig. 9(a)-(f). Uniform M(r) plots of unit value occur
for regular patterns, and correspond to identical
marks for all inclusions. Comparison of various state
variables indicates that the matrix hydrostatic stress
possesses the strongest mark as illustrated by its
difference from unity, while marks for matrix Von
Mises stresses are the weakest. The marks for Von
Mises stresses are mostly insensitive to the distance r
and are not of much consequence. It is interesting to
note that variables (a), (b) and (¢) exhibit very similar
M(r) characteristics. The highest value of M(r)
occurs at the minimum s, implying that the distances
of neighboring inclusions have a strong effect on the
mark intensities. At a distance ri... where M(r)
nearly decays to unity, separation between hetero-
geneities cease to have a significant influence on
variables. Such information leads to conclusions
about the size of the RME. Figure 9(a). (b) and (c)
shows that the intensity of marks in stresses are much
higher for the clustered patterns, and the highest
occur for the Clus-1 pattern. The triple cluster Clus-3
pattern has the largest mark at higher VFs. At low
VFs (10.8%) the undulations do not stabilize at near
unit values, and hence the critical influence region rip,
extends beyond the range of r considered. This
influence region is seen to shrink with increasing
inclusion concentration, especially at higher VFs, as
seen in Fig. 9(d), (e) and (f). The Clus-3 pattern
quickly stabilizes at the unit value, thereby settling
for a smaller RME. The dips near the end are due to
the window edge effect and may be ignored.

Figure 10 shows the density distribution functions

flo)at 10.8% VF with 25 inclusions and at 32.4% VF

with 100 inclusions. The distinction between the f{a)
for the three patterns diminishes with increasing VF
and increasing inclusion numbers. At a lower VF
with less inclusions, the HC pattern has a
considerably large probability density over a rather
small range of stresses. This indicates that the
variation in stresses for this pattern is low. Stress
values for clustered patterns are significantly higher
than that for the HC pattern as implied by the tails.
The probability density peak decreases with increased
clustering. Among the three patterns shown, the
maximum principal stress in the inclusion shows the
maximum difference in the f(¢) plots. The distinction
between the f{o)’s decreases with increased VF and
inclusion numbers.

5. CONCLUSIONS

Tessellation of heterogeneous domains into
Voronoi cells that represent basic structural elements
has important implications in both quantitative
metallography and modeling of microstructures. This
paper is intended to establish the unified tools of
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Fig. 9. Marked correlation function M(r) for: 25 inclusions at 10.8% VF, (a) HC, (b) Clus-1, (c) Clus-3;

100 inclusions at 32.4% VF. (d) HC. (e) Clus-1, () Clus-3.

Voronoi cell based characterization and finite
element modeling for studying various aspects of
micromechanics. In particular, it investigates cor-
relations between functions representing the mor-
phology and mechanical response of various
microstructures. A total of 27 different microstruc-
tures are computer simulated to represent a wide
range of clustering, heterogeneity concentration and
volume fractions. These are tessellated into Voronoi
cells to study the effects of variation in geometric
constructs on stereologic information and on
mechanical behavior. Parameters like local area
fraction and nearest neighbor distance, together with
geometry description functions like mean and
standard deviations, cumulative and probability
density functions, radial distribution functions, etc.,

are utilized for microstructural characterization from
qualitative and quantitative points of view. Both the
probability functions F and f, and intensity functions
K and g are quite effective in qualitatively
distinguishing patterns at low volume fractions
especially with less heterogeneities. At higher volume
fractions the distinction between these patterns
diminishes, and then the functions lose their
effectiveness. The cumulative and density distribution
functions of local area fraction [F(A4) and f(A4)] and
nearest neighbor distance [F{d) and f(d)] are both
reasonably effective at low volume fractions for the
range of particle numbers considered. The intensity
and pair distribution functions K(r) and g(r) are,
however, seen to be most effective for lower inclusion
numbers at the low volume fractions.



GHOSH et al .

MODELING OF COMPOSITES

Principal Stress in inclusion

(d)

Von Mises Stress in Matrix

(e)

10— , . . 0 — 1 —
, : | i
0, 80 M\ ;f\
£ /\ c Fo T Hardoe TR |
0 \ ¢
s g1 [ =+~ Cuset $ A
tu || o e
! s
i 0 || ~~ Hadeoe 260 | - EZ-U‘L k \ — Hardeae
T T G 2 Lo z | k "
o sor ’ i --- Clusierd ! E’ : [,//"\ "\ E’ 0o | — - Ciister’
g oy . ZERN g5t
T 50t ' ~ Ty oo v \\
2 L 2 I 2 \
= 40 = ; \ = A
ﬁ 1 (\l‘\ %3-0 } \‘\ o ﬁLOr !)( A
g Wk Ly 2 o b L A ‘.\
R N 00 M’ { 0 A\
h . \ - \
L o220 f i [ ! \\ . l 0_05‘ ‘/: |
| a i AL o
L v S | ] { P “. .
10 ’,‘ \\\\-_\,’/_ . ~ - , L /’/ ;‘ \\ \\ ) ’,” 1\\\;‘ ;)4 - /,_,i.\\ ‘///
00 :I " L CpennEEEIN o 00 by | S WA 00 iy V.o - N
10 11 12 14 15 16 1B 19 20 20 22 A0 1 12 13 14 15 10013 16 19 22 25 28 31 34
Principal Stress in inclusion Von Mises Stress in Matrix Hydrostafic Stress in Matrix
(a) (b) (c)
———r 55 —— — — 107 . ,
18+ ~ i ’/\ }
0. I |
AN A w0
c A C 4 VAN i
2 ¥ (/ N 2 f Y ! 5 08 N
g GN g IR gl A
TN AR I Y D5
N f l \ — Hardoore T i “\ ! — Hardoore i S ‘.,\\\ — Hardeore
] i Y -~ Cluste? 2 | 3! - Cluster A I -+~ Clustert
g | VA === Clusterd <2 .| i -~ Custer3 4 j x 3 - -~ Closter3
3 I L ) i i 0 05r LY
v A D25 ; it .0 iy W
208t ) 2 . | YRR \
R Y £ 20 ‘ \ S LI \ 1
2 N R 3 ,( W B | \ !
[ ! L [ N | [ B \\
205~ N o115k Y h 8,00 |
or | 4 i o 0! Yo
T % Lig- A\ e ey
02 W if i 0f- [ Y
F NG s C Y,
B J N i Lyt
00 L N T’ 00 A ‘l ‘\.)\4’\. AN 00 lff " . ™ oooopo!
10 12 15 18 20 22 25 286 30 09 10 11 12 13 14 15 15 17 18 1520 25 30 35 40 45 50

Hydrastic Siress in Matrix

()

Fig. 10. Probability density distribution functions for stresses; 10.8% VF for 25 inclusions (a) maximum

principal stress in inclusion. (b) maximum Von Mises stress in matrix. (¢) maximum hydrostatic stress

in matrix, and 32.4% VF for 100 inclusions (d) maximum principal stress in inclusion. (¢) maximum Von
Mises stress in matrix, ( f) maximum hydrostatic stress in matrix.

The Voronoi cell FEM is effectively used to
perform small deformation elastic—plastic stress
analysis for all the microstructures generated.
Contour plots clearly indicate that stresses inside, and
plastic strains at the interface of brittle inclusions
located within the clusters, far exceed their counter-
parts outside clusters. Anisotropy in geometry and
mechanical response anisotropy is gauged by various
orientation and tangent modulus based estimators,
This study shows that moderate agreement exists in
predictions by the geometric and response descrip-
tors, and good conformity is seen within each class.
It may be generally concluded that the hard core
patterns at low and moderate volume fractions are
generally anisotropic. but clustering shows strong

signs of anisotropy at all volume fractions. Interest-
ing observations on the correlation between morpho-
logical distributions and the influence regions for
stress manifestations, are made through the marked
correlation function. This function for Von Mises
stress in the matrix is found to be least affected by
dispersion patterns., while it is quite sensitive for
principal stresses and matrix hydrostatic stress.
Finally, the probability density distributions for the
various stresses match the observations for geometric
parameters like 4 and d.

Observations made in this study are sufficiently
conclusive and may be used with confidence in
characterization and modeling of actual hetero-
geneous materials, where the shape and size may also
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vary with location. This study is currently under way
and will be reported in future papers.
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