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Abstract—This paper deals with the evolution of damage in microstructures of reinforced ductile-matrix
composites, by particle cracking and splitting. A small deformation Voronoi Cell finite element model is
developed, in which each element may consist of a matrix phase, an inclusion phase and a crack phase.
Brittle inclusions may be of arbitrary shapes and sizes, and may be dispersed non-uniformly in the matrix.
Damage initiation of inclusions is assumed to follow a maximum principal stress theory. Complete particle
cracking or splitting is assumed at the onset of damage. The model is validated by a few comparison stu-
dies. Various geometric patterns are studied to test the effectiveness of the model, as well as to understand
the effect of morphology on damage evolution. Actual microstructures from optical micrographs of Al-Si-
Mg composite systems are analyzed and compared with experimentally observed results. Quantitative
characterization and statistical analysis is conducted to correlate morphological parameters with mechan-

ical response. & 1998 Acta Metallurgica Inc.

1. INTRODUCTION

The presence of fibers or particulates in composite
microstructures often has adverse effects on their
failure properties like fracture toughness, ductility
and creep resistance. Important micromechanical
phenomena that are responsible for deterring the
overall properties include, fracture and splitting of
reinforcements, matrix failure and inclusion—matrix
debonding. Many engineering materials exhibit
strong non-uniformities in inter-particle/fiber spa-
cings, inclusion shapes, volume fractions and
arrangements, at the microstructural level. In ad-
dition, there are heterogeneities at larger length
scales which include local regions of clustering and
directionality, often related to the fabrication pro-
cess. Failure characteristics of heterogeneous ma-
terials are affected by microstructural mechanisms
that control initiation and evolution of localized
damage and cracks. These mechanisms are highly
sensitive to local parameters, such as reinforcement
distribution, morphology, size, interfacial strength
etc. Experimental studies with MMCs [i] have
established that particles in regions of clustering or
preferential alignment, have a greater propensity
towards fracture, than those in regions of dilute
concentration. SEM micrographs of damaged
MMCs show that larger particles tend to fracture at
lower macroscopic load levels due to the existence
of large flaws. Christman et al. [2] have shown that
local plastic flow is very sensitive to shape of re-
inforcements. Lack of reliability of these composite
materials has inhibited their applications to high
performance load carrying engineering components.
It is therefore important to understand damage

mechanisms and fracture process for enhancing the
level of utilization of these material systems.

Within the framework of damage mechanics,
micromechanical damage models have been
employed to predict overall constitutive response by
using continuum mechanics principles at the micro-
scopic level [3,4]. While some of these models [3]
provide reasonable predictions of overall properties
for a dilute distribution of damage entities,
others [4] attempt to analyze the interaction effects
between damage entities introduced by morphologi-
cal characteristics of the microstructure. Recently,
novel approaches to integrate micromechanical and
computational approaches at the microscale with
phenomenological approaches in the macroscale
have also been proposed [5]. While many of these
methods can model damage in brittle homogeneous
materials, far fewer analytical models are available
for ductile two phase materials. Small scale yielding
solutions using asymptotic analysis for a single bi-
material interface due to Shih and Asaro [6] and
Hutchinson et al. [7] are notable exceptions.

Evolving damage in heterogeneous media with a
mixture of ductile and brittle constituents have been
numerically modeled using Unit Cell methods. These
methods assume that the material is constituted of
periodic repetition of unit cells, identified as repre-
sentative volume elements (RVE) of the microstruc-
ture. Displacement based finite element analysis is
used to analyze the RVE in order to predict the
onset and growth of evolving damage. Notable
among these are the finite element simulations
by Needleman [8,9], Tvergaard [10]. Bao [Il],
Hom [12], Sugimura et al. [13] and Finot et al. {14].
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In Refs [10-13], simple microstructures with pre-
existing damaged heterogeneities are considered. In
Ref. [14] a finite element mesh which allows for
crack growth by element separation is used to simu-
late microscale particle and matrix cracking. While
these models provide valuable insights into the
microstructural damage processes, the simple mor-
phologies idealize actual microstructures for many
engineering materials. Consideration of simple RVEs
bears little relationship to the actual stereographic
features, and has limited them to the assumption
that all particles or particle/matrix interfaces are
damaged simultaneously. To circumvent these de-
ficiencies, Suresh and coworkers [15,2], McHugh ez
al. [16] among others, have made novel progresses in
computational modeling of discontinuously re-
inforced materials with random spatial dispersion.
However, a very high resolution of finite element
mesh is required even for undamaged heterogeneous
media, and enormous computational efforts are
required to capture failure by these models.

The microstructure based Voronoi Cell Finite
Element Model (VCFEM) developed by Ghosh et
al. [17,18], has shown a significant promise in this
regard. It can overcome the large computational
requirements of conventional finite element
methods, by combining concepts of hybrid finite el-
ements with characteristics of micromechanics. The
VCFEM mesh naturally evolves from the micro-
structure by Dirichlet tessellation to generate a net-
work of multi-sided Voronoi polygons. Each
Voronoi cell represents a basic structural element
containing one second phase inclusion at most
(see [19] for details), and the analysis needs no
further discretization leading to drastically reduced
efforts in generating the microstructural mesh.
Additionally, computational efficiency is greatly
enhanced due to Voronoi cell elements being con-
siderably larger than conventional unit cell finite el-
ements, with reduced degrees of freedom.

The evolution of damage by particle cracking or
splitting, in particle reinforced ductile matrix micro-
structures, is analyzed in this paper by a Voronoi cell
finite element model. No matrix cracking is allowed in
this paper. Each Voronoi cell element may consist of a
matrix phase, an inclusion phase and a crack phase.
The inclusions are brittle, of arbitrary shapes and
sizes, and may be dispersed non-uniformly in the
matrix. Damage initiation is assumed to follow a
maximum principle stress theory or Rankine cri-
terion. Complete particle cracking or splitting is
assumed at the onset of damage. Different geometric
patterns are studied to test the effectiveness of the
model, as well as to understand the effect of mor-
phology on damage evolution. Actual microstructures
from optical micrographs of Al-Si-Mg composite
systems are analyzed and compared with experimen-
tally observed results. Quantitative characterization
and statistical analysis is conducted to correlate mor-
phological parameters with mechanical response.
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2. VORONOI CELL FEM WITH PARTICLE
FRACTURE

The Voronoi cell finite element model has been
developed for undamaged composite and porous
materials in Refs [17, 18] using the assumed stress
hybrid formulation. The formulation is extended to
accommodate damage evolution in the form of par-
ticle cracking or splitting. It is assumed that in par-
ticle cracking, the crack is completely contained
within the inclusion, while for particle splitting its
tip extends nominally into the matrix. The crack in
a fractured particle is realized as an elliptical void
with a high aspect ratio (~10-100). implying a
blunt crack. Each Voronoi cell element is amenable
to change in topology from two constituent phases
(matrix and inclusions) in undamaged cells, to three
phases (matrix, inclusion and crack) in damaged
cells. Complete particle cracking or splitting is
assumed to occur at the very onset of damage, and
thus the problem of crack propagation within each
inclusion is avoided. This assumption is justifiable
from the consideration that for the multitude of in-
clusions analyzed, crack propagation in each in-
clusion would make the problem inordinately large.
Additionally, experimental observations indicate
rapid transition from crack initiation to complete
cracking/splitting.

2.1. Voronoi cell element formulation for damage

Consider a typical representative material element
(RME) consisting of N undamaged and/or damaged
particles, that are contained in each of the N
Voronoi cell elements as shown in Fig. 5(a). The
assumed stress hybrid formulation in the Voronoi
cell finite element method (VCFEM) requires inde-
pendent assumptions of an equilibrated stress field
() in the interior of each element Q. and compati-
ble displacement fields u on the element boundary
Q.. won the matrix—inclusion interface Q. and u”
on the crack boundary 8Q. In an incremental for-
mulation for elasto-plasticity, the incremental two
field (o-u) hybrid variational formulation intro-
duces an element energy functional,

11¢(Aq, Au)

= [ AB(e. Ag)dQ —J & AcdQ
Jo,

Q.
+I (0 4+ Ag) - 1° - (u + Au)aQ
Jog,

_J €+ AD - (u+ Au) dT
[

— J (6™ + Ag™ — 6° — Ac®) - n° - (0 + Au')OQ
o8

— J (6 + Ac®) - n°" - (0’ + Au")3Q 48]
3r

where AB is the increment of complimentary energy
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density. Variables (o, u) correspond to values at the
beginning of an increment, while variables (Aa, Au)
are the corresponding increments in a load incre-
ment or step. Outward normals on Q.. 3Q. and
3Q., are denoted by n°, n° and n, respectively.
Superscripts m, ¢ and cr are associated with the
matrix, inclusion and crack phases, respectively, in
each Voronoi cell element. The total energy for the
entire RME of N Voronoi cells is obtained as
nc=sN_n1¢. Setting the first variation of 7IS. in
equation (1) with respect to stress increments Ao to
zero yields the element compatibility as the Euler
equation, while setting the first variations of IT€
with respect to the independent boundary displace-
ments Au, Au’ and Au” to zero, yield the inter-el-
ement traction reciprocity or element boundary
traction, interface traction reciprocity and zero trac-
tion on crack boundary, respectively. Equilibriated
stress increments Aeg, compatible displacement fields
Au, Au’ and Au", the stress—strain relationships
(22 = Ae¢), along with the Euler equations comple-
tely define the incremental problem for a hetero-
geneous RME.

2.2. Element assumptions

Independent assumptions on stress increments Ae
are made in the matrix and inclusion phases in each
element, thus allowing stress discontinuities across
the interface. In two-dimensional analysis, the
Airy’s stress function @(x, y) is usually convenient
in deriving equilibriated stress fields. Components
of Ac are expressed in terms of @ as:

Fo Fo

3’
= Ac,, = —
a2’ a2 0w axay

Aoy, = Aoy, = 2)
Incorporation of key features of micromechanics in
the choice of stress functions significantly enhances
computational efficiency. Moorthy and
Ghosh [17, 19] have introduced a decomposition of
the matrix and inclusion stress functions into (a)
purely polynomial functions @, Ppoiy and (b)
reciprocal functions @, e and Pfe., for elements
with  matrix, inclusion and crack phases.
Mathematically, the stress functions for the matrix
and inclusion phases are constructed as:

" = poly + dj:gc + ¢$g
P = ;oly + ‘P:gc (3)

In the above equation, the purely polynomial part
of the stress functions @fuy, accounts for the far
field tractions on the element boundary Q. and on
the interface 6Q, and are expressed as:

o =Y AR @
P4

where (&, 1) are the scaled local coordinates with
origin at the element centroid (x., y.), and may be
written as & = (x—xJ)/L, n=(—yJ)/L. L 18 a
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scaling parameter (=./max(x —x;) max(y —y;) V
(x, y) € Q). The use of the local coordinates (&, 1)
prevents numerical inaccuracies in @™° due to high
exponents of (x, »), and thus avoids ill-conditioning
of the element stiffness matrices. The reciprocal
terms @y, Prc and Pf. facilitate stress concen-
tration near the interface and crack boundary,
accounting for the shape of the inclusion and crack.
They also help satisfy traction reciprocity (zero
traction for the crack) at the interfaces 3Q. and
o€, as well as decay at large distances from these
interfaces. The matrix reciprocal function @7, is
constructed from a transformed radial coordinate f,
that is generated by either a Schwarz—Christoffel
conformal transformation (for elliptical
heterogeneities) [20], or by a Fourier series trans-
formation of the interface Q. (for arbitrary
shapes) {17]. The radial distance f satisfies the con-
ditions f'— o0 as (x, y) —oo, and f= 1 on the
interface Q.. In the expression for @7, shape
effects are dominant near 3Q. and vanish in the far-
field.

. 1
=) i) WAB}‘?,; (5)
Pq i

At the interface (f = 1), coefficients Af}, in
equation (5) impart flexibility to the polynomial
coefficients Afj, for matching traction conditions.
Finally, the terms @c and &g are contributions to
the matrix and inclusion stress functions due to the
crack.

¢I’2‘C: = Z e q Z p+q[-)‘—qll l)
o -2 ‘*Z(fp+q'i",1 ) ©

The inclusion crack is assumed to be of elliptical
shape with a high aspect ratio. Consequently, the
crack boundary Q. is parametrically represented
through a conformal mapping of the ellipse as fo(x,
y) = 1. f, represents a parameterized radial coordi-
nate with the property f.,—o0 as (x,y) — oo. The
reciprocal terms

1

pHgt+i—|
cr

in @5, facilitate zero traction condition on the
crack boundary 3Q.,. The same terms @[ provide
asymptotic stress gradients near the crack tip in the
matrix. Stress increments may be derived by substi-
tuting @ functions in the equation (2) in the form
{Ad™} = [PT™){A™} for the matrix and
{Ac®} = [PU{AB} for the inclusion. All of the stress
coefficients {AB™} and {AfS°} are a priori unknown
and are solved by setting the first variation of the
element energy functional (1) with respect to the
stresses to zero. Compatible displacement incre-
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ments are generated on each of the boundaries/
interfaces 3Q., 9Q. and 8Q. by interpolation in
terms of generalized nodal displacements as,

{Au} =[L{Aq} . {Au}=[L{Aq]) |
{Au"} = [L"]{Aq") (7

where {Aq}, {Aq'} and {Aq"} are the nodal displace-
ment increment vectors, and [L°], [L) and [L°"] are
the corresponding interpolation matrices. In gen-
eral, linear forms of [L] are computationally effi-
cient. However for the crack boundary,
discontinuous normals at the nodes may degrade
the solution and hence a quadratic interpolation is
implemented. Details of the solution process are
provided in [17, 19,21].

2.3. Constitutive relations and particle cracking cri-
terion

The reinforcing phase of particles are assumed to
be brittle and are modeled as linear elastic ma-
terials. The matrix material on the other hand is
assumed to be ductile, and is modeled by small de-
formation elasto-plasticity relations using associated
J> flow theory with isotropic hardening. For the
brittle particulate materials, microstructural damage
initiation is assumed to be governed by a maximum
principle stress based criterion, also known as the
Rankine criterion. In this criterion. a crack is in-
itiated when the maximum principle stress in ten-
sion exceeds a critical fracture stress o, at a point.
In the computational procedure, complete particle
cracking or splitting is assumed to occur in the
form of an elliptical void, as soon as the principle
tensile stress reaches o.. In the case of particle
cracking, the crack tip coincides with the interface
and is completely contained in the particle, while it
extends nominally into the matrix for particle split-
ting. A parameter

Crack Length
Inclusion Dimension

dcrack =

distinguishes between complete cracking and split-
ting of inclusions. A fully cracked inclusion corre-
sponds to a value de =1, for which the crack
terminates at the inclusion—matrix interface,
whereas splitting is represented by deack = 1.004 for
which the crack tip has moved slightly into the
matrix. In the incremental computational pro-
cedure, more than one point may exceed the critical
oo value during increment. The location of a single
crack is determined by a weighted averaging
method as:

v [65(x, 1) 2 0] (®)

Ydamage =

ac(.\';\')
PO
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where o7(x,)) correspond to all values of maximum
tensile principal stress larger than o, in the particle.
The crack is oriented at right angles to the principal
stress directions at (Xgamage, Ydamage) and extends to
the interface on both sides.

2.3.1. Critical fracture stress. Various experimen-
tal studies on metal matrix composites [22-24],
suggest that the critical stress o, for particle frac-
turing is not only material dependent, but is also
influenced by the particle size due to the existence
of microcracks. Micrographs of damaged compo-
sites indicate that larger particles tend to fracture at
lower load levels than smaller particles. To account
for the size effect in particle cracking, and hence
flaw size and distribution, two alternative
approaches are considered. These criteria have been
discussed in Curtin [25], Kiser et al. [24]. The first is
a fracture mechanics based criterion, in which par-
ticles are assumed to contain flaws and the critical
stress to fracture is determined from Mode-1 fast
fracture of these flaws. In this criterion, an initial
particle flaw size ¢ is assumed to be a fraction of a
characteristic length D, and is expressed as ¢ = eD.
The characteristic length is considered to be the di-
ameter of an equivalent circle or

where A4 is the particle area. The factor e 1s deter-
mined from experimental observations, and a value
~5-15% is found to be suitable in this study. For
mode-] fracture, the critical load to fracture o, is
thus related to the fracture toughness Kjc- through
the relation:

oo =N _ K ©
VR Vmeb

Larger particles with large initial flaws will fracture
at smaller critical stresses by this relation. The sec-
ond criterion uses statistical functions to correlate
particle size, stress levels and failure. It is based on
a Weibull distribution, in which the probability of
particle fracture P{A. o) is related to the particle
volume (area in 2D) A and the maximum principal

stress oy as:

Pid o) =1 -G (10)

where 6, and m are two material parameters in the
Weibull distribution. The probability of damage in
this model, increases with larger particles at larger
stress levels. The Weibull parameters o, and m may
be calculated by correlating geometric features and
simulated stresses with experimental observations,
as discussed in the section on numerical examples.
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Fig. 1. Representation and VCFEM mesh for RME with V;=20% cracked square inclusions: (a) 0%
damage, (b) 50% damage and (c) 100% damage.

3. VALIDATION EXAMPLES FOR YORONOI CELL
FEM

The accuracy and efficiency of the Voronoi cell
finite element model in stress analysis of hetero-
geneous materials with particle cracking has been
extensively verified by comparison with results of
analyses conducted with conventional finite element
packages as well as with published results in the lit-
erature. Several comparison studies have been made
with this model, some of which are described
in [21,19]. Only one such example study with
simple, uniform distribution is described here. To
establish an aspect ratio for the elliptical cracks, a
numerical experiment was conducted with various
aspect ratios viz. (§=3, 5, 10, 25, 20 and 100).

From this study, a ratio =10 was found to be
most desirable from an efficiency and accuracy
point of view. While both plane stress and plane
strain problems have been solved, the numerical
examples presented in this paper are only for the
plane strain assumption.

3.1. Square diagonal packing with existing crack

This comparison problem, studied by Finot et
al. [14] with finite deformation kinematics, involves
stress analysis of a square-diagonally packed com-
posite microstructure with pre-cracked inclusions.
The representative material element (RME) consists
of two square SiC inclusions  (volume
fraction Vy=20%) in an Al-3.5% Cu matrix as

400.0 T T T
5
300.0 ~
s
w2
W
(3}
=]
m ) .
;% iy T -
2 2000 - 'y T 1
= 4 o o VGFEM (0% Damage)
2 ¢ - Finot et. al. (0% Damage)
oy i s o VCFEM (50% Damage, Particle Crack)
<) A
2 ,.-‘,/ s Finot et. al. (50% Damage, Particle Crack)
=4 /,’>/ o VCFEM (100% Damage, Particle Crack)
g 1000 7 - ——- Finot et. al. (100% Damage, Particle Crack) |
= /i & VCFEM (50% Damage, Particle Split)
Ji — — - Finot et. al. (50% Damage, Particle Split)
v VCFEM (100% Damage, Particle Split)
— - — Finot et. al. (100% Damage, Particle Split)
0.0 1 i 1
0.0 0.5 1.0 1.5

2.0

Macroscopic Tensile Strain (%)

Fig. 2. Macroscopic stress—strain response for RMEs with V;y=20% cracked square inclusions.
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shown in Fig. 1. The elastic properties of SiC par-
ticles are assumed to be: Young’s Modulus £ = 450
GPa and Poisson’s Ratio v = 0.2. The elastic—plas-
tic properties for the Al-3.5% Cu alloy matrix are
taken as: Young's Modulus £ = 72 GPa, Poisson’s
Ratio v = 0.32; Post yield behavior (Power law
hardening) o, = oo(eh/co+ 1)™, with 6,=175 MPa,
and N = 0.2. Different degrees of pre-existing
damage, e.g. 0% damage with two intact inclusions,
50% damage with cracked inclusion, and 100%
damage with both inclusions cracked, are assumed
in accordance with those used in Ref. [14]. For 0%
damage, the matrix stress function " in
equation (3) consists of 61 terms, with 25 poly-
nomial terms @po,lp + ¢ = 2.6 in equation (4)]
and 36 reciprocal terms O i = 1.3, p+ ¢ = 2.4
in equation (5)]. The corresponding inclusion stress

(2)

(c)
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function &° in equation (3) consists of 25 poly-
nomial terms @p,[p + ¢ + 2.6 in equation (5)).
The function f in equation (5) for @ is created by
a Fourier series transformation of the square inter-
face, as described in Ref. [17]. For damaged micro-
structures, 36 additional terms in the form of @/
and &%, are appended to the stress functions &™
and &/ = [..3, p + ¢ = 2..4 in equation (6)].

The VCFEM simulation of the RME is executed
for up to a vertical applied strain of 2% as shown
in Fig. 1. In Fig. 2 the macroscopic stress—strain re-
sponses, calculated by taking volumetric averages of
microscopic variables, are compared with results in
Ref. [14], and excellent agreement is recorded. The
stress capacity of the RME reduces considerably
with transition from particle cracking to particle
splitting. As the crack propagates into the matrix

Max.
RS - 6.435E+01
L 8.000E+00

- 6.000E+00

[ 4.000E+00

2.000E+00

Min, ‘L 0.000E+00
(b)

7.126E+01
2.000E+01

1.600E+01
N ;
1.200E+01

8.000E+00

4.000E+00

Min, /™ - 0.000E+00

(d)

Fig. 3. Equivalent plastic strain (%) distribution at €, =2% for (a) 50% cracked_inclusion, (b) 100%
cracked inclusion, (¢) 50% split inclusion and (d) 100% split inclusions.
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due to splitting, the damaged inclusions cease to
carry significant load. The major load now shifts to
the matrix material and the remaining undamaged
inclusions. Contour plots of the effective plastic
strains for the cracked and split microstructures at
€,,=2% are presented in Fig. 3. The matrix regions
vertically adjacent to the split inclusions have con-
siderably less plastic strain than those adjacent to
cracked inclusions, due to much lower stresses
caused by splitting. Also in the case of splitting, a
considerably larger plastic strain accumulates near
the crack tip. The plastic strain flows in the form of
ligaments from one crack tip to the next, causing
bands of strain localization. Similar observations
have also been made in Ref. [14] for axisymmetric
inclusions.

4. DAMAGE IN NON-UNIFORM
MICROSTRUCTURES

Examples in the previous section consider pre-
existing damage, and thus do not involve crack in-
itiation and change of element topology. The pre-
sent section deals with continuously evolving
microstructural topology through the onset and
evolution of particle cracking in more complex,
computer simulated and real microstructures. For
undamaged Voronoi elements, the matrix function
@™ in equation (3) consists of 34 terms with 25
polynomial terms ®p,[p + ¢ = 2..6 in equation (4)]
and 9 reciprocal terms @R [i= 1.3, p = 0.2,
g = 2—p in equation (5)]. The inclusion stress
function @° consists of 25 polynomial terms
Poonlp + ¢ = 2.6 in equation (5)]. Fewer recipro-
cal terms are used than in the previous example due
to the smooth interface for circular inclusions. For
cracked elements though, the additional reciprocal
terms are the same as those in the previous
example, i.e. [i = 1.3, p + ¢ = 2..4 in equation (6))].

4.1. Computer simulated microstructures

The effect of particle clustering on damage evol-
ution is studied with two computer generated
microstructural distributions as follows.

(a) A hard core distribution: which is generated as
a variant of a pure random Poisson pattern through
the imposition of two constraints, namely (i) no
two inclusions are allowed to overlap, and (ii) all
inclusions are completely contained within the
region window.

(b) A4 single cluster hard core distribution.

(c) Triple cluster hard core model, where clusters
are characterized by reduced average inclusion sep-
aration distance in an otherwise hard-core region.

Each RME consists of 50 equi-sized circular Si
particles dispersed in an Al-Si-Mg alloy matrix,
and constituting a 20% volume fraction. Pertinent
dimensions are: RME size = 200 yu x 200 y, particle
diameter = 14.2 p, cluster diameter in (b) = 33.38
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4 and cluster diameter in (c) = 25.78 u. Details of
the generation process are described in Ref. [27].

4.1.1. Characterization. Statistical functions of
geometric descriptors, which can discriminate
between patterns. as discussed in Refs [27,28], are
considered. Figures 4(a) and (b) show the cumulat-
ive distribution function F(4) and the probability
density function f{A4) of the local area fraction,
measured as the ratio of the particle size to the area
of the associated Voronoi cell. The range of 4 for
hard core pattern is significantly shorter than for
clustered patterns and thus the difference in F(A)
increases with increasing area fraction. The high
spike in f{A4) for the hard-core pattern is a conse-
quence of the steep gradients due to the pro-
nounced uniformity in local area fraction, and the
intensity of these spikes diminishes with clustering.
The cumulative distribution function F(d) and den-
sity distribution functions f{d) for center to center
nearest neighbor distances are plotted in Fig. 4(c)
and (d). The longer plateaus in F(d) and the corre-
sponding zeros in f{d) for clustered patterns are for
the distances for which a near neighbor does not
exist. Spikes in f{d) are much more pronounced for
the hard-core distribution due to large number of
neighbors at nearly similar distances. The lowest d
values are much smaller for the clustered patterns.
Second order intensity function K{(r), defined as the
number of additional points expected to lie within a
distance r of an arbitrarily located point divided by
overall the point density. is an informative descrip-
tor and has been discussed in [30,27, 28]. Addition-
ally, the pair distribution function of

N LdK(r)
&) = 2ar dr

corresponds to the probability g(r)dr of finding an
additional point within a circle of radiusdr and
centered at r. The two functions are plotted for the
patterns in Fig. 4(e) and (f) and compared with a
pure Poisson process for which K(r) = nr* and
g(r) = 1. With increase in clustering, K(r) deviates
from that for the Poisson process. The peaks in g(r)
are more pronounced for the hard core distribution
indicating a greater likelihood of encountering ad-
ditional particles at lower radii for this volume frac-
tion.

4.1.2. Damage simulation. Both complete particle
cracking and particle splitting are analyzed in this
example, with initially undamaged particles. Con-
stituent material properties are as follows:

For the A/-Si~Mg matrix: Young’s modulus
E = 69 GPa, Poisson’s ratio v = 0.33, and post
yield elastic—plastic behavior is obtained from data
on B-treatment matrix material in Figs 5 and 1 (p.
137) of Hunt [22). For the Si inclusions: Young's
modulus £ = 161 GPa, Poisson’s ratio v = 0.2. All
particles are of identical shape and size. and there-
fore a constant critical stress to failure g =300
MPa is assumed. The RMEs are subjected to a
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macroscopic horizontal tensile strain that increases
from zero to a maximum of e.=2%. Evolving
damaged configurations by particle splitting are
shown in Fig. 5(a—f). For the hard core pattern, the
first set of particles crack at ¢,,=0.6%. Particle
cracking occurs at random locations with increased
loading up to a strain of e,, =1.6%, after which no
additional cracking is noticed. Large plastic strains
occur in regions near the crack tips. However, due
to the lack of close proximity of cracked particles,
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plastic strain regions were not observed to propa-
gate in any preferred direction. In contrast, for the
triple cluster microstructure in Fig. 5(d—f), the first
set of particles crack and split within the cluster
near the top-right corner at ¢, =0.4%. With
increased loading, high stress concentration at the
crack tips lead to progressive cracking of other par-
ticles inside this cluster before particles in other
clusters begin to crack. However, if only particle
cracking is allowed, particles in both the top right

(8)

- 6.426E+01

I 1.000E+Q1

~ 8.000E+00

F 4.000E+00

 0.000E+00

(h)

Fig. 5. Damage configurations of hard core microstructure at (a) € =0.8%, (b) €y =1.4% and

(C)exe=2.0%. Damage configurations of triple cluster microstructure at (d) €. =0.8%, (e) €,,=1.4%

and (f) ¢ =2.0%: corresponding effective plastic strains (%) for triple cluster microstructure at (g)
€= 1.4% and (h) €, =2.0%, for particle splitting with ¢, =300 MPa.
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Fig. 6. Macroscopic stress—strain response for computer
generated microstructures due to particle cracking and
splitting.

and bottom center clusters begin to crack almost
concurrently. Particles in the third cluster remain
relatively undamaged during the entire process. At
the final strain ¢, =2.0%, most particles in the two
clusters are split while damage in the third cluster
has just begun. During the initial stages of defor-
mation and splitting, localized plastic straining

4.0 T : :
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—-—- 3 Cluster

30 J

Mark Correlation Function of B
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Sampling Distance (L)
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occurs in the top-right cluster which propagates
from one crack tip to the next within the cluster by
linking. Plastic straining in other clusters is less pro-
nounced during this period. With subsequent par-
ticles splitting, plastic straining intensifies in
bottom-center cluster and eventually links up with
strained regions in the top cluster. High strain
regions are much more diffused in the case of par-
ticle cracking and occur at higher macroscopic
stresses compared to the particle splitting case.
Macroscopic stress—strain responses of the hard
core and triple clustered RMEs are illustrated in
Fig. 6. Abrupt drops due to particle cracking are
smoothed in this figure. The stress level for the
hard core pattern with particle splitting continues
to drop throughout the loading. For the clustered
microstructure, drops are higher in the initial stages
due to rapid failure in the clusters, followed by
increase in the stress levels due to matrix hardening.
In general the RME with cracked particles projects
a considerably stiffer behavior when compared to
that with split particles. The effect of spatial distri-
butions on damage evolution is studied through
marked correlation functions M(r) introduced in
Pyrz [30] and used in Refs [27,28]. Two marks as-
sociated with each particle are considered for their
relevance to damage evolution. They are: (a) a par-
ameter R, which is defined as the ratio of the
maximum principal stress to the critical failure
stress o, for an undamaged particle, and as the
ratio of the current overall strain to the strain at
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Fig. 7. Marked correlation function for (a) ratio of maximum principal stress to critical failure stress
(0.r), (b) average effective plastic strain in each Voronoi cells, for computer simulated microstructure.
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which the particle had cracked, for a cracked
particle (Z-=1). Ry, signifies the propensity to
advance the damage state in the microstructure;
and (b) the average effective plastic strain ¢ in each
Voronoi cell, which characterizes evolving matrix
failure due to presence of damaged particles.

The marked correlation function M(r), for which
a mathematical formula is presented in [30], estab-
lishes the effect of microstructural morphology on
the mark. M(r) for the two patterns and for a uni-
form microstructure (M(r) = 1) are compared in
Fig. 7. For the hard core pattern the functions
rapidly decay to unity, but for the clustered pat-
terns the decay is considerably slower.
Higher M(r)values for clustered patterns at short
range sampling distances r represent larger influence
of the damage marks. The high value of M(r) for ¢”
at short sampling distances indicates severe matrix
straining near damaged particles. The slower at-
tenuation of M(r) for Rps at short to medium range
indicates that particle cracking is a major mode of
damage evolution. This function is effective in
understanding the sensitivity of damage variables to
local perturbations in the morphology, and can pro-
vide a criterion for determining the optimal RME
size.

4.2. Particle splitting simulation with actual micro-
graphs

In this example, VCFEM analysis is conducted
with micrographs obtained from serial sectioning of
reinforced Al-Si-Mg alloys containing =10 or 20%
by volume of Si particulates (see [29]). The material
is developed at ALCOA Technical Center by rapid
solidification of fine powders using a gas atomiza-
tion process [22], to achieve equiaxed Si particles.
The powder is consolidated by cold isostatic com-
paction, canned and degassed at 454°C, and finally
consolidated to full density by hot isostatic press-
ing. Two types of microstructure are considered,
viz. (a) a naturally aged 20% volume fraction com-
posite with mean Si particle size of 4.4 pm, and (b)
a naturally aged 10% volume fraction composite
with mean Si particle size of 3.9 um. Serial-section-
ing of the specimens yield a series of 2-D sections
as discussed in [29], which are then digitized.

4.2.1. Characterization. Equivalent microstruc-
tures that closely approximate the actual 2D mor-
phology  of  micrographs and  yet  are
computationally less intensive are generated. In this
process each particle of arbitrary shape is replaced
by an equivalent ellipse, constructed by equating
the Oth, 1st and 2nd moments of the actual particles
with those of the equivalent ellipses. The moments
of actual particle are computed as the sum of
moments of each pixel contained within the particle,
while the moments of the ellipse are represented in
terms of standard geometrical parameters. The pro-
cedure yields (i) the centroid (x., y.), (ii) lengths (a,
b) of the major and minor axes, and (iii) angular

PARTICLE FRACTURE 975

orientation & of the major axis of the equivalent
ellipse, details of which are discussed in Ref. [21].
An optical micrograph of a section, overlapped
simulated and exact microstructures, and the Voro-
noi cell mesh obtained by surface to surface tessella-
tion, are presented in Fig. 8(a), (b), and (c),
respectively. Two sections of each volume fraction
10 and 20% are analyzed. The V;=10% sections
have 77 and 89 Si particles, while the V;=20% sec-
tions contain 97 and 106 Si particles. A majority of
computer results are explained with respect to sec-
tions of the 20% Vs, for which the microstructural
element has dimensions of 205 ux 180 pu, and the
two-dimensional area fractions for the sections are
calculated to be ~4;=18.6% and A;=18.9%, re-
spectively (note that the 3D V~20%). Particle size
distribution histograms (not shown) show consider-
able scatter within each section and also between
sections. Cumulative (F) and probability density
distribution (f) functions of the local area fraction
(4) and near-neighbor distance (d) are plotted in
Fig. 4(a), (b), (¢) and (d). A comparison of the dis-
tribution functions in Fig. 4 reveals that the particle
distribution is more in line with the hard-core pat-
tern. Similar observations are also made in the
plots of the second order intensity function K(r)
and the pair distribution function in Fig. 4, where
the absence of local peaks in g(r) signals negligible
clustering. This observation is consistent with the
material fabrication process in which the Si particu-
lates are randomly precipitated from the mixture.

4.2.2. Damage simulation. Material properties of
the constituents are: For the AL-Si-Mg matrix:
Young’s modulus E = 69 GPa, Poisson’s ratio
v = 0.33, and the post yield elastic—plastic behavior
(non-linear isotropic hardening) is obtained from
data on T4-matrix presented in Fig. 8 of Kiser et
al. [24]. For the Si inclusions: Young’s modulus
E = 161 GPa, Poisson’s ratio v = 0.2 and mode I
critical stress intensity factor for pure Si is found to
be Kjc=0.6 MPa/m. In the fracture mechanics
approach for determining the size dependent critical
fracture stress o, in equation (9), the initial flaw
size ¢ is assumed to be proportional to the average
equivalent particle diameter of D,.,. The propor-
tionality constant e is calibrated by analyses of
auxiliary RMEs created from micrographs of other
sections of the specimen. A comparison is made
between the computer simulations and experimental
observations with micrographs for (a) the number
of cracked particles and (b) overall stress—strain
behavior. The estimate is obtained to be
e=5=0.125 or 12.5%, and therefore the critical
stress to fracture is taken to be

oo —__Kic__
C T /125D n

For the approach with Weibull distribution, the
two micrographs of 10% V¢ are used for calculating

Oer =
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Fig. 8. (a) Optical micrograph of a section of Al-Mg-Si composite (Si V¢=20%), (b) simulated micro-
structure superimposed on the micrograph and (c) Voronoi cell mesh resulting from tessellation.

parameters o, and m, since they exhibit the onset
of particle cracking at ¢, =3%. The cross-sectional
area A of each individual particle is calculated from
the data on ellipses in Fig. 8(d). The maximum
principal stress a; at ¢, =3% is obtained from
VCFE analysis without any particle damage. The
probability of failure Pg{A. o) in equation (10) is
assumed to be >0.95. The Weibull parameters are
evaluated to bem = 2.37 and o.,=2.12 GPa, by
comparison with the micrograph observations and
by fitting the data in a least-square sense. The prob-
ability function Py of individual particles indicates
that both particle size and stress levels contribute
independently towards cracking. A qualitative com-
parison between the two approaches for evaluating
critical stress, is made by VCFEM analysis with the
20% V; section of 97 particles strained to ¢ =6%.
Progression of damage in the microstructure with
increasing strain is shown in Fig. 9a), (b) and (c).
Particles colored black are cracked while the grey
particles are uncracked. A comparison of the frac-

tion of different sized particles that are cracked by
each approach, is made with actual micrographic
observation [Fig. 8(a)] in histograms [Fig. 9(d) and
(¢)). The fractions for the actual micrograph are
shown in grey with dashed outline. The histograms
indicate that while both criteria are good for large
particles, the Weibull distribution based approach
provides a better agreement with the micrographs
at the smaller size range. Hence, it is used in all
subsequent simulations.
A damage parameter is defined as

S Area of Cracked Particles
P = Total Area of All Particles’

which accounts for size, is plotted in Fig. 10(a) for
each of the two sections of the Fy=10 and 20%
composites as a function of increasing strain.
Experimental values of the corresponding damage
parameter are given in Hunt [22]. where the areas
are calculated by sectioning after straining to a cer-
tain level. Consequently a single data point is
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Fig. 10. (a) Area fraction of cracked particles as a function of the macroscopic strain. Macroscopic
stress—strain response for the Al-Si-Mg composite microstructures at two volume fractions, (b) com-
pressive response and (c) tensile response.

obtained from each specimen. Three experimental
data points are plotted for the V;=20% composite,
while the Vi=10% has a single data point.
Generally a good agreement is noted between simu-
lated results and experimental data for the
Vi=20% composite. Stress—strain response of
nearly undamaged microstructures are shown in
Fig. 10(b) by loading RMEs in compression to an
average strain of ¢,,=6%. While the elastic re-
sponse is not very different, the 20% V; composite
has higher yield stress and higher flow stress than
the 10% ¥, composite. The tensile response with
particles cracking according to the Weibull criterion
is shown in Fig. 10(c). Results of VCFEM analyses
for each volume fraction are averaged over the two
sections and are compared with experimental results
of Kiser and Zok [24]. While VCFEM analysis is in
2D and the experimental results are for 3D, the

comparisons have a good qualitative agreement.
The cross-over point at which the 20% V; composite
becomes less stronger than the 10% ¥y composite, is
approximately at e.,~1.2-1.8%, and compares well
with the experimental value of ¢.,~1.8%. The stress
capacity is in general higher for VCFEM predic-
tions, which may be attributed to the constrained
plastic flow arising from plane strain constraints.
Additionally, the present simulation does not allow
matrix softening which can also lower the load ca-
pacity. The stress—strain behavior of a uniform
(square edge) microstructure with a single circular
inclusion of volume fractions 10 and 20% is also
plotted. The 10% uniform composite does not
crack for the range of strains considered and pre-
dicts a stiff response. Failure of the single particle
in the 20% V; composite results in an abrupt drop
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Fig. 11. Contour plots of particle fracture probability by the Weibull damage criterion immediately
before: (a) ¢..=4.2% and (b) €,,=6.0% for the Al-Si-Mg composite microstructure (Vr=20%).
(Damaged particles are in white with cracks.)

in load capacity and yields unreasonable predic-
tions.

Contour plots of particle failure probability and
effective plastic strains for the 20% Vy composite are
illustrated in Figs 11 and 12, respectively. Damaged
particles are in white with cracks in Fig. 11, and the
contour plots are for undamaged particles indicat-
ing the likelihood of damage. An interesting obser-
vation made from these plots is that some large
particles which exhibit a higher tendency to crack
at early stages of loading, may remain intact
throughout due to failure of neighboring particles
and load redistribution. This phenomenon, also
noticed with particle clusters in the previous

(2)

example, illustrates the influence of evolving micro-
structural morphology on the propagation of
damage. A particle crack induces large plastic flow
in the neighboring matrix which causes the stress to
rise in particles in this region and eventually initiate
a crack. The plastic strain distribution in Fig. 12(a)
shows localized bands of severe deformations ema-
nating from crack tips and propagating to neigh-
boring particles with cracks. The remainder of the
matrix undergoes relatively smaller deformations.
Marked correlation functions M(#) are plotted in
Fig. 13 as functions of distance and particle shapes,
for the two sections of 20%}; composite. Two
marks viz. (a) particle fracture probability Py and
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9.000E+00

6.000E+00

3.000E+00

0.000E+00

(b)

Fig. 12. Effective plastic strain (%) contours at (a) ¢,,=4.2% and (b) Ce=6.0% for the Al-Si-Mg
composite microstructure (Fy=20%).
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Fig. 13. Marked correlation functions of (a) failure probability and (b) average effective plastic strain in

each Voronoi cell as a function of radial distance, and marked correlation functions of (c) failure prob-

ability and (d) average effective plastic strain in each Voronoi cell as a function of form factor; for the
Al-Si-Mg composite microstructure (F¢=20%).

(b) effective plastic strain ¢” are selected as qualitat-
ive  indicators of  microstructural damage.
Uniform M(r) plots of unit value occur for regular
patterns and correspond to identical marks. Figure
13(a) and (b) of M(r) with respect to the sampling
distance r shows that the functions for P¢ quickly

stabilize near the unit value, while the decay is
slower for ¢® with a few abrupt peaks. The lack of
strong clustering in these patterns leads to smaller
influence regions for these microstructures. Marked
correlation functions with respect to the relative
difference in form factors Fyare plotted in Fig. 13(c)



GHOSH and MOORTHY:

and (d). The form factor is an indicator of the devi-
ation in shape from a perfect circle (Fy=1), and for
an elliptical shape, may be expressed as (see [28]):

4nR?
Ff :% s R=+ab;
perimeter”

perimeterzn[lﬁ(a +b) — «/E] (11)
where ¢ and b are the major and minor axes. The
maximum observed form factor F; is computed to
be 0.97 while the minimum is 0.48. Figures 13(c) and
(d) depict increasing correlation functions especially
for €. This infers that shape has a significant influ-
ence on the damage in these microstructures.

5. CONCLUSIONS

This paper is devoted to stress analysis of non-
uniform, ductile matrix composite microstructures
with particle cracking, by the Voronoi cell finite el-
ement method (VCFEM). The computational
model assumes complete cracking at the onset of
damage, and differentiates between the behavior of
fully cracked particles and split particles. The
uniqueness of this model lies in its ability to model
continuously changing element topology due to pro-
gressive material failure, with no user interference.
Validation of the computation model for damage is
done through various studies, including comparison
with other numerical studies in the literature that
use conventional finite element codes. These studies
have predominantly analyzed simple uniform distri-
butions with pre-existing cracks. Good agreement is
obtained in these comparison studies, both from a
macroscopic and microscopic point of view.

A major advantage of VCFEM is that it can be
used for analyzing damage in non-uniform real
micrographs without making major morphological
simplifications. A set of computer generated hard-
core and clustered microstructures are simulated to
understand the effect of spatial distribution on
damage evolution. Damage initiates within each
cluster, propagates within the cluster and finally
links up with the damage in the neighboring clus-
ters. Regions of severe plastic flow exist in the
matrix ahead of split particles, indicating possible
sites of matrix failure. Particle splitting is found to
yield much softer overall response than particle
cracking. In a concluding example,the VCFEM
model is directly constructed from a digitized opti-
cal micrograph of an Al--Si~-Mg composite system.
VCFEM results are compared with results of exper-
iments with this material for two volume fractions.
Good concurrence is obtained in the overall stress—
strain behavior, as well as in the number of
damaged particles in the microstructure. Larger
particles tend to fail at lower loads and therefore
serve as sites of damage initiation. Nevertheless,
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smaller particles may also damage with loading,
due to stereological factors like proximity with
other particles and relative shape. It is noted that
damage evolution in real microstructures is a gra-
dual process, and takes place by progressive particle
failure. Material behavior is therefore misrepre-
sented with the single cell models where particle
cracking results in abrupt changes in response.
Statistical descriptors are used as indicators of mor-
phological influence on the damage state. The effi-
ciency of the VCFEM codes is noteworthy. A
comparison with conventional FEM packages for
undamaged-non-uniform and damaged-uniform ma-
terials shows a ~30-50 times reduction in comput-
ing time. Currently, matrix cracking phenomenon is
being incorporated in VCFEM and this will be
reported in future.
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