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Abstract This paper is aimed at modeling the
propagation of multiple cohesive cracks by the
extended Voronoi cell finite element model or
X-VCFEM. In addition to polynomial terms, the
stress functions in X-VCFEM include branch func-
tions in conjunction with level set methods and
multi-resolution wavelet functions in the vicinity
of crack tips. The wavelet basis functions are adap-
tively enriched to accurately capture crack-tip
stress concentrations. Cracks are modeled by an
extrinsic cohesive zone model in this paper. The
incremental crack propagation direction and
length are adaptively determined by a cohesive
fracture energy based criterion. Numerical exam-
ples are solved and compared with existing solu-
tions in the literature to validate the effectiveness
of X-VCFEM. The effect of cohesive zone param-
eters on crack propagation is studied. Additionally,
the effects of morphological distributions such as
length, orientation and dispersion on crack propa-
gation are studied.
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1 Introduction

Numerical analysis and simulation of the growth
and interaction of multiple cracks in materials is
a challenging enterprise due to various kinematic,
morphological and constitutive complexities that
govern this process. Conventional finite element
approaches suffer from very slow convergence
since the element formulation does not account for
high gradients and singularities. Even a very high
density mesh cannot overcome pathological mesh
dependence near the crack tips and avoid biasing
the direction of crack propagation. The difficulties
aggravate significantly in the presence of multiple
cracks, due to their interaction with each other.
Various methods have been proposed for improv-
ing the effectiveness of computational methods in
modeling cracks. These include the singular ele-
ment method wusing quarter-point elements
(Barsoum 1976, 1977; Henshell and Shaw 1975;
Hibbit 1977), the method of superposition that
introduces singular terms to the finite element
interpolations (Yagawa et al., 1980; Yamamoto and
Tokuda 1973), or the hybrid singular element meth-
ods (Lin and Tong 1980; Piltner 1985; Tong et al.
1973; Tong 1977), which augment interpolation
functions using stress intensity factors from clas-
sical elasticity theory. While most of these analyses
are limited to stationary cracks, it is only in the
recent years that effective numerical methods for
simulating crack propagation are being proposed.
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In this regard, the cohesive zone models or CZM
(Camacho and Ortiz 1996; Foulk et al. 2000;
Geubelle 1995; Needleman 1987, 1990, 1992; Ortiz
and Pandolfi 1999; Tvergaard 1990) have emerged
as important tools for modeling crack propaga-
tion in homogeneous and heterogeneous materi-
als. A large number of studies e.g. Camacho and
Ortiz (1996), Carpinteri (1989) and Xu and
Needleman (1994) have simulated crack propa-
gation by inserting special cohesive elements be-
tween continuum elements. The use of a highly
refined computational mesh, especially near the
crack tip is still a requirement, even though the
effect is mitigated due to the finite crack tip stress
with the CZM. Alternatively, intra-element enrich-
ment approaches, based on the incorporation of
embedded discontinuities in displacement or strain
fields have been proposed (see Jirasek 2000 for
a review), which eliminates mesh dependent pre-
diction of the evolving crack path and hence the
need for remeshing. The extended FEM or X-FEM
(Belytschko and Black 1999; Belytschko et al. 2001;
Dolbow et al. 2000; Moés and Belytschko 2002;
Moés et al. 1999) is a powerful recent addition
to this family of intra-element enrichment. Cohe-
sive crack propagation has been modeled in this
work by using the partition of unity concept to
incorporate local enrichment functions that allows
the preservation of the general displacement based
FEM formalism.

The Voronoi cell finite element method
(VCFEM), developed on the principles of the

assumed stress hybrid FEM formulation (Tong et al.

1973; Tong 1977), has had considerable success in
the micromechanical analysis of multi-phase het-
erogeneous materials (Ghosh et al. 2000; Ghosh
and Moorthy 1998, 2004; Ghosh and Mukhopad-
hyay 1991; Li and Ghosh 2004, 2006; Moorthy and
Ghosh 1996, 2000). By introducing augmentation
stress functions having forms that are motivated
from analytical micromechanics, the method is able
to overcome the need for high resolution mesh
in the proximity of morphological discontinuities,
such as inclusions, voids, cracks, etc. VCFEM is
based on an unstructured mesh of closed polyg-
onal cells as shown in Fig. 1la, where each cell
corresponds to the immediate neighborhood of
a heterogeneity like an inclusion or crack. While
a typical mesh of Voronoi polygons evolves from
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tessellating a heterogeneous domain (Ghosh and
Mukhopadhyay 1991; Ghosh and Moorthy 2004),
an element in VCFEM need not adhere to this defi-
nition and can be any closed polygonal cell consist-
ing of a heterogeneity in a surrounding matrix. For
example, in this paper, each Voronoi element in-
volves a polygonal sub-domain that encompasses
aninitial crack. Conceptually, VCFEM has a strong
resemblance to the mesh-free methods. Each cellin
VCFEM represents the neighborhood and region
of immediate influence of a heterogeneity, which
may be perceived of as the support domain for spe-
cially constructed interpolation or kernel functions
of field variables and their evolution. A high level
of accuracy with significantly reduced degrees of
freedom has been achieved with VCFEM in Ghosh
et al. (2000); Ghosh and Moorthy (1998, 2004),
Ghosh and Mukhopadhyay (1991), Li and Ghosh
(2004,2006) and Moorthy and Ghosh (1996, 2000).
Computational efficiency of VCFEM is substan-
tially higher than many conventional FE models.
The cohesive crack propagation model has been
incorporated in VCFEM in Ghosh et al. (2000)
and Li and Ghosh (2004) to model interfacial deb-
onding in fiber reinforced composites. However,
in these models, the debonding or crack evolution
path is along the interface and hence the cohesive
zone regions are known a-priori. In the event that
the crack branches off into the matrix, the propaga-
tion path is no longer pre-assessed and needs to be
determined in each load increment, consistent with
the local state of stresses, strains and morphology.
This task is considerably more formidable since a
slight deviation from the actual path can lead to
completely wrong prediction.

Following the trends set in Belytschko et al.
(2001), Dolbow et al. (2000), Moé&s and Belytschko
(2002) and Moés et al. (1999), an extended VCFEM
or X-VCFEM has been recently developed in (Li
and Ghosh 2006) for modeling the growth of mul-
tiple cohesive cracks in brittle materials. The model
accounts for interaction between cracks and
invokes an adaptive crack growth formulation to
represent the continuously changing direction of
evolving cracks. X-VCFEM augments the conven-
tional VCFEM model by adding multi-resolution
wavelet stress functions (Glowinski et al. 1990;
Jaffard 1992; Qian and Weiss 1993) in the vicinity
of the crack tip, level set based branched functions
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Fig. 1 (a) A mesh of Voronoi cell elements, each containing a single pre-existing crack, (b) a typical Voronoi cell element

showing different topological features and loads

for stress discontinuity across the crack. The incre-
mental crack propagation direction and length are
adaptively determined by a cohesive fracture
energy based criterion. No remeshing is needed
in X-VCFEM for simulating crack growth, and
this adds to its desirability and effectiveness. The
present paper is an extended the developments
in Li and Ghosh (2006) by adding crack merging
to its growth mechanism and investigates the pre-
dictions of the model for different geometric and
constitutive manifestations. It begins with a review
of the X-VCFEM formulation and demonstrates
its convergence through a numerical example.
X-VCFEM is then used to understand the influ-
ence of cohesive parameters like peak stress and
critical separation, on crack growth in monolithic
brittle materials. Subsequently, the effect of mor-
phological distributions including crack interac-
tion, clustering, alignment, etc. on the growth and
coalescence are studied as factors critical to the
failure process.

2 Summary of X-VCFEM formulation for
cohesive cracks

A comprehensive account of the development of
the extended Voronoi cell finite element model
(X-VCFEM) is given in Li and Ghosh (2006).
Figure 1(a) shows a pre-cracked microstructural
region 2 with a dispersion of cracks that is tes-
sellated into an unstructured mesh of N polygonal
Voronoi cell elements. The topology and
constituents of a typical Voronoi cell (VC) element
Q. are depicted in Fig. 1(b). Although each VC
element contains a single crack initially, the adap-

tive X-VCFEM formulation allows cracks to cross
boundaries during the course of their evolution.
The fracture process zone for each crack is rep-
resented by a cohesive zone model. The element
boundary 9%, with outward normal nf encom-
passes segments of prescribed traction Iy, pre-
scribed displacement I',, and inter-element
boundaries Iy, i.€. 895 =T% UTue UTTme- The
incompatible displacement field across a crack I'¢r
with a normal n" is facilitated through a set of con-
nected node-pairs along the crack length. In the
assumed stress hybrid finite element formulation,
stationary conditions of the element energy func-
tional in the variational principle yield weak forms
of the kinematic equation and traction reciproc-
ity conditions on the boundary and crack face. In
an incremental formulation for small deformation
elasticity with evolving cracks, the element energy
functional I, is expressed as:

E E cr cr
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where o, € and B = (%or : S : g) are the equili-
brated stress field, the corresponding strain fields,
and the complimentary energy, respectively in an
element interior. uf is a kinematically admissible
displacement field on the element boundary dQ%
and u® represents displacements on the internal
cohesive-crack surfaces I'c;. Note that body forces
are neglected in this formulation. Variables with
superscript E are on the element boundary while
those with superscripts cr correspond to the crack

surface. The prefix A denote increments of respec-
1 2
tive variables. The notations (e) and (e) represent

two sides of the cohesive crack surface in a Voronoi
cell element. The last term in Eq. (1) corresponds
to work done by cohesive tractions 5°" due to crack
surface separation. The element kinematic equa-
tion is satisfied in a weak sense from the stationary
condition, obtained by setting the first variation
of I, in Eq. (1) with respect to stress increments
to zero. Weak satisfaction of the traction reciproc-
ity conditions on (i) the inter-element boundary
[jne, (i) the domain traction boundary I';, and (iii)

1 2
the crack surfaces I'¢y and [ (two sides of the
crack) are obtained by setting the first variation
of the total energy functional IT = Zé\lzl I1, with
1

respect to the displacement fields Au”, Au‘" and
2
Au, respectively to zero.

The cohesive tractions are given by a rate inde-
pendent extrinsic linear cohesive zone model
(Camacho and Ortiz 1996; Ortiz and Pandolfi 1999),
which has infinite stiffness at low separations. The
effective normal traction-separation response of
this model is depicted in Fig. 2 (a, b). The traction
across the cohesive surface is expressed in terms of
free cohesive fracture energy potential ¢ as:
teoh — %n + g—zt = é((Snn + B25,t) )
where §, and §; correspond to the normal and tan-
gential components of the opening displacements
over the cohesive surface in the normal (n) and tan-
gential (t) directions, respectively. The magnitude

. 2
of traction t = %¢ = V10h? 4 p=2/%00° and the

effective opening displacement § = /82 4 5257,

Here 1°°" and 1°" are the normal and tangential
components of surface tractions and § is a coupling
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coefficient to allow assignment of different weights
to normal and tangential opening displacements.
For increasing §, ¢ is expressed as

t= { S V< 3)
0 V8 > 8,

The displacement §, is the separation at which

t goes to zero and opax is the peak value of .

Unloading from any point on the traction-sepa-

ration curve, proceeds along a linear path from the

current position to the origin following the relation

__ Omax d¢ — Omax

t= —

86 Smax

V(S S (Smax S 8e (4)

Reloading occurs with a reduced stiffness in com-
parison with the original stiffness. For negative
normal displacement (compression), stiff penalty
springs with high stiffness are introduced between
the node-pairs on the crack face.

In X-VCFEM formulation, the equilibrium con-
ditions and constitutive relations in the element
interior, as well as the compatibility conditions on
the element boundary and crack surface are satis-
fied a-priori in a strong sense. Equilibrated stress
fields in the interior of the element and compati-
ble displacement fields on the element boundaries
and crack faces are assumed in this method. In
the incremental formulation, equilibriated stress
increments are obtained from the stress functions
increments A®(x,y), and inter-element compati-
ble displacement fields across the element bound-
ary Q% and continuous displacement fields along
acrack face Fér/ 2 (superscript 1/2 correspond to two
sides of the crack) in an element are generated
by interpolation of nodal displacements (Ghosh
etal. 2000; Li and Ghosh 2006; Moorthy and Ghosh
1996,2000). Stress functions are constructed by the
superposition of three different components, i.e.
® = POy 4 @branch 4 Wit The stress increments
in an element are computed by adding contribu-
tions from each individual function to yield

Aoy
Aoyy
Aoyy .
A,qu
— [[P]poly [P]bmnch [P]wvlt] A,Bst (5)
e
Aﬂm,n,k,l

e
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Fig. 2 Normal and tangential traction-separation laws for the extrinsic linear cohesive zone model

{AB_e is the column of unknown stress coefficient
increments associated with the stress interpolation
matrix [P(x, y)].. The pure polynomial component
®POl represents far field stresses away from the
crack tip. The branch function ®brarch facilitates
discontinuity in stresses across the crack
surfaces without affecting the solution in the con-
tinuous region beyond the crack. For the functional
representation of the crack surface, a vector level
set method (Belytschko et al. 2001; Sethian 2001;
Ventura et al. 2002, 2003) is used. An approxima-
tion to the crack surface Fclr/ %in Fig. 1is constructed
to describe the discontinuous stress fields across
crack paths in terms of a signed distance func-
tion. The branch stress function increment is con-
structed in terms of the radial distance and angular
functions, based on this function. The multi-reso-
lution wavelet stress function ®*"!t is constructed
from the family of Gaussian functions, i.e.

_(E=by2 _(n=dy2
Ay peaEn) =e Ca ) P 2AB L a0 (6)

The dilation and translation parameters (a,c)
and (b,d) respectively, can vary in a continuous
fashion. By changing the translation parameters,
the multi-levels of wavelet bases can be made to
closely follow a moving crack tip. The dilation
parameter with compact adjustable window sup-
port can be used to provide high refinement and
resolution near the crack tip. The wavelet based
stress function is constructed in a local orthogo-
nal coordinate system (&, 7) centered at the crack
tip, with the & direction corresponding to the local
tangent at the crack surface. For implementation
in multi-resolution analysis involving discrete lev-

els, the translation and dilation parameters should
be expressed as discrete multiples of some starting
values. Figure 3 shows the distribution of multiple
levels of wavelet bases in an extended Voronoi cell
element. This region of influence of the wavelet
bases is positioned symmetrically about the crack
in the vicinity of an evolving crack tips. The crosses
(x) corresponds to the position of each wavelet
basis function b,,, d,, at alower (m) level. As shown
in Fig. 3, the squares (OJ) correspond to additional
locations at a higher level (m + 1) in the multi-
resolution algorithm. The region covered by the
multi-level wavelet functions reduce successively
with levels, but provide higher resolution. Thus the
region of influence of the (m + 1)-th level wave-
lets is smaller than that for m-th level. The wavelet
enriched incremental stress function in X-VCFEM
is thus written as

AP (€, )
My Ky

= > A®,y g (&) ©)

m=1,n=—ny, k=1,l=-1,

where the translation parameters n and / range
from —n, and —I[, to n, and [,. This allows the
wavelets to be positioned symmetrically about the
crack (Fig. 3). The addition of higher level wavelet
bases to the stress function, marked by squares ((J)
in Fig. 3, is done adaptively in accordance with a
strain energy based element error measure that has
been derived in Li and Ghosh (2006) and Moorthy
and Ghosh (2000). The necessary condition for sta-
bility, that guarantees non-zero stress parameters
B for all non-rigid body element boundary/crack
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Fig. 3 Schematic diagram of an extended VC element,
exhibiting the crack tip region and the surrounding re-
gion of multi-level wavelet representation. The crosses (x)

face displacement fields, is stated as
ng >n5+n;r—3 (8)

where ng is the number of g parameters, and ng
and g are the number of displacement degrees of
freedom on the element boundary and crack face
respectively.

Solution of the resulting nonlinear equations by
a pure Newton—Raphson solver exhibits a discon-
tinuous drop with the evolution of cracks, for cases
where the loading process is monotonically con-
trolled by incremental deformation or load condi-
tions. To avert this, the arc-length solver is used
through the introduction of an unknown loading
parameter to govern the load increments (Crisfield
1981, 1983; Li and Ghosh 2006; Schweizerhof and
Wriggers 1986).

3 Cohesive crack propagation and coalescence

Various criteria and conditions govern the evo-
lution of multiple cohesive cracks in an elastic
medium. These are discussed next.

corresponds to the position of lower level wavelets and the
locations of the adapted higher level wavelet bases are indi-
cated by squares (0J)

3.1 Criterion for direction of incremental crack
advance

In X-VCFEM, the incremental crack advance
direction is determined from the cohesive fracture
energy at the crack tip. From the equivalence of
cohesive fracture energy ¢ for complete decohe-
sion and the energy release rate G, (see Ortiz
and Pandolfi 1999), the crack growth direction is
estimated as that, along which the cohesive frac-
ture energy ¢ is maximized for a given crack tip
state of stress. The cohesive fracture energy ¢4
at the crack tip A along any direction « can be
expressed in terms of the separation §(«) in that
direction as:

(o)

/ (a)ds

0 A
t(a)

(/ \/([ﬁoh)z + 1372([tcoh)2 . z_(:dt)
Omax A

()

The effective cohesive traction for direction « can
be deduced to be

da(a)

1 1
Ha) = \/(axxsinza — 0yySin 2a + oyycos?a)? + ﬂ*z(—zaxxsin 20 + 0yycOs 2a + anysin 200)2 (10)
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The incremental direction of crack propagation is
assumed as that which maximizes the cohesive frac-
ture energy at A according to the criteria:

0pal@) _ o g pa()
oo da2

From Egs. (9) and (10), the criteria (11) is explicitly
expressed as

<0 (11)

The cohesive fracture energy at two points A (pres-
ent crack tip) and B (close to A in the direction of
crack propagation) are evaluated by substituting
the value of the stresses in Eq. (12a). The tip of the
cohesive zone is obtained from the linear extrapo-
lation of this line that corresponds to zero cohesive
fracture energy. From Fig. 4(a), the increment of
cohesive zone for probable crack growth is given
by the dimension:

¢a(a) = 20 ( r%lax - I(O‘)z) (@) - oy
Omax Al= P iAB) (14)
3 S ot AT
ﬂ = — ¢ [— = 0 _—
o Omax 0O
o
dot \/(Uxxsinza — oyysin 2o + oy cos?a ) + B~ ( 308N 200 + 0, COS 20 + ayysm 2a)
|:(Uxxsin2a — OxySin 2o + cryycoszoe)(axxsin 200 — 205,08 200 — 0yySin 2)
1 1 .
+8” (——oxxsm 20 + 0yycos 2a + 2axxsm Za) (=008 20 — 20,50 20 + 0,COS 20x)
=0 (b)
pa e

_ . ) 2
Fr e — |:(oxys1n 200 — oyysin“a — oyycos”a)

X (0xxSin 200 — 207,c08 200 — 0yy8in 20)

1 1 2
+p” ( OxxSin 200 — 07y COS 200 — zayysin Za) (= 0xxCOs 200 — 20,y8in 2c + 0y, COS 20;)}

<0 (c)

(12)

The direction of crack propagation «. is obtained as the solution of Eq. (12)b as

20y

—0Oxx+0oyy=E,/(Oxx —oyy)2 +40~3y
arctan

Olg(VCFEM —

(13)

2.3 Oxx—Oxx+0yy

The optimal angle ozXV CFEM j

282Dy £, (464862 +4)03, — (44 —4B242) 0207y — B2~ D) (03 +03,)
arctan

is chosen as the one that satisfies the condition in Eq. (12)c.

3.2 Length of the incremental cohesive crack
advance

The length of cohesive zone advance (Al) in the
crack evolution scheme is estimated using a crite-
rion that the cohesive fracture energy goes to zero
at the end of the new segment as shown in Fig.
4(a). Hence the directional gradient of the cohe-
sive fracture energy plays a role in this criterion.

where |AB| is the distance between the two points
in the incremental crack direction.

3.3 Cracks crossing interelement boundaries
Crack advance from one Voronoi cell element to

the next occurs in X-VCFEM following an algo-
rithm depicted in Fig. 4(b). A continuous tracking
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Fig. 4 Algorithms for
incremental propagation
of cohesive cracks: (a) for
determining direction and
incremental length of the
cohesive zone, (b) for
crossing element
boundaries and (¢) for
merging with other cracks

VC element

A A
Cohesive zone (

Present crack ti

Crack path

=t
Normal 2—node pair

method is implemented to monitor if a cohesive
crack surface has reached an element boundary or
gone past it. The intersection of the crack surface
with an element boundary is first checked by solv-
ing the equation system

X — X Y=Y X —Xpn

- )
Xitl — Xi Yi+1 — Vi

_ Y = Vn
Xn+1 — Xn Yn+1 — Yn

(15)

where (x;,y;) represents the tip of the cohesive
crack line for the ith increment, and (x,,, y,) is the
position of the nth node on the element boundary.
If the intersection point is outside of the cohesive
line or the element boundary, it is assumed that
there is no intersection. Once a cohesive crack has
reached its intersection with the boundary, a new
node pair (n1,n7) is introduced on the element
boundary at this point as shown in Fig. 4(b). The
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Intersection
points

Crack tip

Element 2

d L

:'I ml m2 |
———
. m3

- / Cohesive crack 2

3—node pair for cracks merging

node pair belongs to the intersection of the ele-
ment boundary and the cohesive crack, i.e. nijny €
dQL N ;. The crack is subsequently advanced to
the next element following the intra-element crack
advance procedure discussed above.

3.4 Crack coalescence

The coalescence or merging of multiple cracks is
also considered is this paper. Figure 4(c) shows
the merger of two cohesive cracks. The algorithm
for crack merging, outlined below, is an extension
of the element boundary intersection algorithm in
Sect. 3.3.

e Record all the cracks that have propagated in
an increment.
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e Check for the intersection of the last incremen-
tal segment of the cohesive crack with those of
all neighboring cracks that belong to either the
same element or neighboring elements, using
Eq. (15).

e Insertathree-node junction (m,my, m3) atthe
point of intersection, once intersection of two
crack segments is ascertained. This junction is
shown in Fig. 4(c).

e Apply cohesive zone models to all node pairs
of the three nodes at this junction.

e Contribution of the junctions nodes, e.g. (my,
my), to the load vector in the assembled ma-
trix equation requires special treatment. For
each of these nodes, contributions of integrals
from adjoining crack segments belonging to
two different cohesive cracks are summed.

e Assoon as crack tip merges with other cracks,
the stress concentration at the crack tip disap-
pears. Consequently, remove the wavelet func-
tions corresponding to this crack tip from the
stress functions for the element.

4 X-VCFEM validation for accuracy and
efficiency

A set of numerical examples are conducted for val-
idating the accuracy and efficiency of X-VCFEM,
prior to its application for parametric studies on
multiple crack propagation in brittle media. In this
section, three sets of numerical examples are solved
and compared with other codes or established re-
sults in the literature, for examining the accuracy
and efficiency of X-VCFEM. These convergence
studies for static and quasi-static cracks augment
studies that have been conducted in Li and Ghosh
(2006).

4.1 Comparison of a single crack propagation
model with ABAQUS

As a benchmark, a static problem of a plate with a
single cohesive edge crack is solved using the com-
mercial FEM code ABAQUS and compared with
results by X-VCFEM. The problem, schematically
depicted in Fig. 5(a), is solved for plane strain con-
ditions under a remote tension load. The material

modeled has a Young’s modulus £ = 70 x 10> MPa
and Poisson ratio v = 0.33. A special user ele-
ment (UEL) subroutine is developed in ABAQUS
for incorporating the cohesive model at the crack
face. It is difficult to incorporate the extrinsic cohe-
sive model in the displacement based ABAQUS,
since there is a stress jump at zero displacement.
To circumvent this problem in ABAQUS, a bilin-
ear cohesive zone model discussed in Li and Ghosh
(2004) is used to describe crack growth in the plate.
The cohesive parameters for this model are omax =
5MPa, s, =1 x 10°°mm, §, = 5 x 10~ mm and
B = 0.707. The uniform load in the y direction is in-
creased from 0 — 3 MPa. A total of 12840 QUAD4
elements with 13250 nodes and 77 cohesive ele-
ments are used in ABAQUS. In X-VCFEM, the
entire domain is represented by a single element
consisting of 142 nodes on the boundary and crack
faces. Adaptive multi-level enrichment of the wave-
let bases is performed by the strain energy crite-
rion (Li and Ghosh 2006). The optimal parameters
for stress function representations in X-VCFEM
have been determined in Li and Ghosh (2006) to
bep,=¢qg, =13, s, =t, =0,n, = 4,1, =1,
mnzkn=4,a1=01=b1=d1:0.1and
tr, = tre = 0.5. This corresponds to 102 terms
in the polynomial stress function ®P°Y, 1 term in
the branch function ®°"h and 128 terms in the
wavelet function ®*V!! for a total of 231 terms. This
structure of element stress functions is retained for
all subsequent simulations. The crack is assumed to
propagate horizontally due to problem symmetry
and hence, the modules for determining incremen-
tal crack direction in Sect. 3 are switched off in this
problem. The automatic load stepping algorithm
in AQAQUS requires a total of 37 load steps while
the X-VCFEM simulation is conducted in 8 steps
to reach the desired maximum load. Figure 5(b)
shows the load-vertical displacement (o — uy) plot
at the point A of the crack face. The load-displace-
ment results by X-VCFEM are in excellent agree-
ment with the high resolution ABAQUS model,
thus exhibiting its accuracy. On the other hand, the
X-VCFEM simulation takes only 1.6 minutes on a
single CPU in the Pentium 4 cluster with 2.4Ghz
Intel P4 Xeon processors, as opposed to 13.9 min-
utes for ABAQUS on the same machine. Even for
this simple example, an excess of tenfold advantage
in computing speed is achieved by X-VCFEM. This
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factor is expected to increase considerably with
increasing complexity, such as more cracks.
Figure 6 shows the contour plot of the load direc-
tion stress oy, and the corresponding stress distri-
butions due to various terms in the stress function
at the end of the first load step. The figure in the
inset of Fig. 6(c) is a rescaled plot of the stress
due to the branch function, since this is orders of
magnitude smaller (mode I crack in this problem)
than those due to polynomial or wavelet represen-
tations. The set of contour plots point to several
important observations summarized below.

e Thestress distribution due to polynomial terms
in Fig. 6(b) describes the stress field far from
the crack tip well, but it fails to predict a high
gradient around the crack tip.

e The stress distribution due to the branch func-
tion in Fig. 6(c) clearly shows its capability to
depict stress discontinuity along the crack sur-
face. However, the magnitude of this stress is
of the order of 10711, which is almost trivial
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u, at point A (m)

compared with contributions from the polyno-
mial and wavelet functions. This is because the
stress discontinuity does not exist at the crack
face for this mode I problem, as shown in the
stress contour plot of Fig. 6(a).

e Figures 6(d, e and f) show stress distributions
due to three levels of wavelet functions, respec-
tively. High gradients in the stress component
are missed by the low level wavelet functions,
but these are represented much better by higher
levels of wavelets in the adapted smaller
regions. This demonstrates the advantage of
the multi-resolution wavelet function repre-
sentation.

4.2 Comparison with the results of a classical
dynamic crack propagation problem

This is a numerical experiments, based on the well
known Kalthoff’s experiment on dynamic crack
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Fig. 6 Contour plot of the load direction stress oyy
and the corresponding distributions due to different
terms in the stress functions: (a) total oy,, (b) contri-
bution from ®P°Y, (¢) contribution from @Pranch (jn.

propagation in an impact loaded prenotched plate.
This problem has been the subject of many studies
(Kalthoff 2000; Kalthoff and Winkler 1988;
Rethore et al. 2005). The studies suggest that a
crack, subjected to a tension-compression load as
shownin Fig. 7(a), propagates at an angle of approx-
imately 60-70° with respect to the initial notch
in the plate. The present X-VCFEM development
does not incorporate inertia terms, and hence a
quasi-static crack propagation problemis simulated
instead of the dynamic test. The configuration in
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set shows a re-scaled contour near the crack face), (d)
contribution from level-1 ®"YIt, (e) contribution from
level-2 ®™!t, and (f) contribution from level-3 WV

Fig. 7(a), shows that the experimental projectile
motion is replaced by the traction boundary con-
ditions in the simulation under plane strain condi-
tions. A small initial crack length (a = 0.02,7 =
0.11 in Fig. 7(a)) is chosen to mitigate the effect
of the constrained right hand boundary on crack
propagation. Material properties for this problem
are: Young’s modulus £ = 207 GPa and Poisson
ratio v = 0.3. Since the cohesive zone model
parameters corresponding to the experiments are
essentially unknown to the authors, the X-VCFEM
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Fig. 7 (a) A plate with an edge crack for the classical
Kalthoff experiment, (b) cohesive models with three differ-
ent sets of parameters, (¢) prediction of the crack path by

simulation is conducted with three sets of cohe-
sive parameters as shown in Fig. 7(b). They are:
(i) CP-1: oppax = 40.0MPa, §, = 0.6 e-4m, B = 1,
(ii) CP-2: omax = 20.0MPa, 8, = 1.2 e-4m, 8 =
1, and (iii) CP-3: omax = 10.0MPa, §,=2.4 e-4m,
B = 1. The sets correspond to identical cohesive
fracture energy (area under the curve) but differ-
ent peak stress and critical separation values. The
X-VCFEM simulations also investigate the sensi-
tivity of the solutions to the cohesive parameters.
The entire computational domain is represented
by a single element in X-VCFEM with 132 nodal
degrees of freedom. The crack paths, predicted by
X-VCFEM simulation for the three sets of cohe-
sive parameters are shown in Fig. 7(c). The initial
crack growth angle for all cases is around 70°. This
angle is corroborated by brittle failure experiments
at very low velocities in Erdogan and Sih (1963).
Subsequently, the crack propagation takes place
within the envelope between 60° and 70°. This is
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X-VCFEM, and (d)applied stress-horizontal displacement
plots at point A for different cohesive zone models

in agreement with studies in Kalthoff (2000), Kalt-
hoff and Winkler (1988), Rethore et al. (2005). Fig-
ure 7(c) also shows that the crack growth path for
this problem is not sensitive to the cohesive zone
parameters. The dynamic conditions, as well as
boundary constraints are responsible for the small
difference between X-VCFEM results and those
in Rethore et al. (2005). Figure 7(d) shows the plot
of the applied stress as a function of the horizon-
tal displacement at the base of the notch at A. A
linear response is seen for all the models.

4.3 Crack propagation in a three-point bending
specimen

In this example, a mixed-mode cohesive crack prop-
agation is modeled in a three-point bend test with
an unsymmetrically positioned initial crack. The
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Fig. 8 (a) A three-point bending specimen with an un-
symmetric initial crack, (b) comparison of load-deflec-
tion response from results of X-VCFEM (Mariani and

problem has been studied by Mariani and Perego
(2003) using XFEM under plane stress conditions.
Figure 8(a) shows the geometrical dimensions, load
P at point A and boundary constrains. The ini-
tial crack position is determined by the offset ra-
tio «, defined as the ratio of the distance of the
initial crack from the mid-span cross-section to
half of the beam span. The material has a Young’s
modulus £ = 31,370MPa and Poisson ratio
v = 0.2. The cohesive parameters for this problem
are CP1: oypax = 4.4 MPa, §, = 0.07719298 mm,
B = 1, which have been used in Mariani and Per-
ego (2003). Once again, the entire domain is repre-
sented by a single Voronoi element in X-VCEFM
with 154 nodal degrees of freedom, and the stress
interpolation functions consist of 102 terms in the

Perego 2003) and, (¢,d) comparison of the crack paths by
X-VCFEM with that in Mariani and Perego (2003) for
a = 0.25 and o = 0.5 respectively

polynomial stress function, 1 term in the branch
function and 128 terms in the wavelet function for
a total of 231 terms. The arc-length method ex-
plained before is used to govern the load
increments so as to describe the softening in load-
deflection responses. Figure 8(b) shows the load-
deflection curve (at the load point A) for two
values of the offset parameter, i.e. « = 0.5 and
a = 0.25. The initial elastic response in the load
P-deflection u curve is stiffer and also the peak load
is higher for higher values of «. The load-deflection
response exhibits significant softening in the later
stages of crack propagation due to the extent of
the evolved crack. The path of crack propagation
for the two cases are shown in Fig. 8(c) and (d).
The cracks move towards the point of applied load
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and align themselves perpendicular to the edge of
the specimen. Excellent agreement is obtained be-
tween the results by X-VCFEM and in Mariani and
Perego (2003).

5 Effect of cohesive parameters on crack
evolution

Cohesive zone model parameters, €.g. omax and &,
in Eq. 3, can significantly affect crack propagation
and the overall behavior of a cracking material.
Issues related to the implementation of cohesive
zone models for the process zone in a crack path
have been discussed in detail in Elices et al. (2002)
and Yang and Cox (2005). In Elices et al. (2002), it
has been argued that intrinsic models with a hard-
ening branch followed by a softening branch ex-
tend a cohesive crack to a zone with large number
of cracks, thus inhibiting localized cracking. Fur-
thermore, the intrinsic models use a high initial
hardening slope, which results in mesh dependence
of the solution and very small elements are neces-
sary near the fracture surface. An extrinsic model,
which consists of a monotonically decreasing trac-
tion function, is consequently a desirable model
especially in the absence of an explicitly defined
crack path. However, for displacement-based finite
element analysis, the extrinsic models face a ma-
jor problem arising from the stress jump at § = 0.
This requires regularization for stability, and con-
sequently the intrinsic models are preferred with
displacement based FEM. Stress intensity factors
(K7 and Kj7) and the J-integral are used as alterna-
tives to traction at the crack tip. In comparison, the
assumed stress based X-VCFEM can provide the
stress explicitly at the crack tip without depending
on the displacements, and hence is an advanta-
geous method with the extrinsic cohesive models.
This section considers the effect of various param-
eters in the extrinsic cohesive model, as well as
the morphology e.g. distribution and orientation
of pre-existing cracks, on their evolution.

5.1 Crack propagation in a three-point bending
specimen

This example revisits the three-point bend simula-
tion in Sect. 4.3 with three different sets of cohesive
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parameters, to examine their effect on crack prop-
agation. The cohesive parameters are:

e CPl: opax = 44MPa, §, = 0.07719298 mm,
(highest peak stress, lowest critical displace-
ment)

CP2: omax = 2.2MPa, §, = 0.15438596 mm
CP3: omax = 1.1MPa, §, = 0.30877192 mm
(lowest peak stress, highest critical displace-
ment)

The coefficient 8 = 1 in Eq. 2 for all cases. The
simulations are carried out till softening behav-
ior is observed in the load-displacement response.
Figure 9(a) is a plot of the applied load to the
deflection of the point of application of the load.
Significant sensitivity to the cohesive parameters
is seen in these plots. The load-deflection response
exhibits softening in the later stages of crack prop-
agation due to the significantly evolved crack. The
stiffness of the P-u curve is higher for higher val-
ues of the peak stress omax. On the other hand,
larger 8.’s in CP2 and CP3 delay relatively the
onset of softening for the cases with smaller peak
stresses during the damage process. The path of
crack propagation for the three cases are shown in
the Fig. 9(b). The cracks move towards the point
of applied load and align themselves perpendicu-
lar to the edge of the specimen. The crack growth
path does not depend significantly on the cohesive
parameters.

5.2 Crack growth in a sheared plate

Crack propagation in a plate with a central crack
was experimentally studied by Erdogan and Sih
(1963), where the plate was subjected to a far field
shear load. An optical micrograph of the cracked
specimen in Erdogan and Sih (1963) is shown in
Fig. 10(a). The material of the specimen in the
experiment was assumed to be homogeneous, iso-
tropic and linearly elastic and the crack was
assumed to be brittle. This problem is simulated
by X-VCFEM with a single element of dimen-
sion 10 x 8cm as shown in Fig. 10(c). The initial
crack length is lp = 1.6cm. The material param-
eters are: Young’s modulus E = 100 GPa, Pois-
son ratio v = 0.3. Since the cohesive parameters
have not been assessed in the experiments, the
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sensitivity of the solution to five different sets of
cohesive parameters is studied in the simulations.
These sets, illustrated in Fig. 10(b) correspond to
the same cohesive fracture energy and are:

CP1: 61yax=3.0MPa, §, = 3.0 x 103 mm
CP2: 61ax=6.0MPa, §, = 1.5 x 10> mm
CP3: 61nax=3.0MPa, §, = 6.0 x 10> mm
CP4: 61,,x=6.0MPa, §, = 3.0 x 10> mm
CP5: 0nax=1.5MPa, §, = 6.0 x 10> mm

The coefficient 8 = 1 in Eq. 2 for all cases. In Fig.
10(c), a uniform shear load per unit length g is
applied on the top and bottom surfaces. The load
increment is applied by controlling the incremental
crack propagation (Li and Ghosh 2006). A total of
8load increments are applied to execute this prob-
lem. In each increment, the applied load is scaled
by the arc-length parameter (Li and Ghosh 2006)
to yield an equilibrated applied load correspond-
ing to a prescribed crack propagation length.

The crack paths predicted by X-VCFEM for all
the different cohesive parameters compare very
well with experimental observations in Erdogan
and Sih (1963). The path shows very little sen-
sitivity to the cohesive parameters. However the
cohesive parameters have a significant influence
on the shear load response as a function of the
crack length. This is demonstrated in Fig. 10(d),
where the normalized crack length is defined as
I, = %. Thus the crack propagation
rate, but not its direction is dependent on the cohe-
sive parameters. For the cases with larger peak
traction i.e. CP2 and CP4, higher applied loads are
needed for causing similar extent of crack growth
as for CP1 and CP3 with lower peak stresses. Com-
parison of the results for parameters CP2 and CP4
show that a smaller §, results in quicker reduction
of the local cohesive traction. This makes the over-
all load with CP2 to increase slower than that with
CP4 corresponding to a higher §,. The result with
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Fig. 10 (a) Optical micrograph showing the path of crack-
ing in a plate with a central crack subjected to far-field shear
(Erdogan and Sih 1963), (b) 5 different sets of cohesive

parameters CPSis consistent with the trends exhib-
ited with the other parameters. Although the simu-
lation results show that both oy and 8, affect the
crack growth, comparison of cases CP1, CP2, CP3
with CP4 shows that the crack growth is more sen-
sitive to omax than to §,. The results also imply that
the cohesive fracture energy or effectively the en-
ergy release rate G, does not alone determine the
crack propagation behavior. Individual parame-
ters, affecting the shape of the cohesive law, play an
important role in predicting growth characteristics.

5.3 Propagation of multiple cracks in a plate

A plate with 28 randomly located and oriented
cracks is simulated under a tensile loading in this
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Normalized crack lenght (V1)

parameters for X-VCFEM simulations, (¢) corresponding
crack paths generated by X-VCFEM, (d) comparison of
the growth of cracks for the different parameters

example. Figure 11(a) and (b) show the two micro-
structures with different crack distributions. For
the microstructure 1, cracks of equal length are
randomly dispersed but are oriented horizontally.
The microstructure 2 has cracks of random length
and orientation. In addition, it contains a cluster
of 8 cracks in an otherwise random distribution
as shown in Fig. 11(b). The plate is of dimen-
sion 0.1x0.1 m, and the material parameters are:
Young’s modulus £ = 10*MPa and Poisson
ratio v = 0.3. The Voronoi cell mesh in Fig. 11(a)
consists of 694 nodal degrees of freedom on the
cell boundaries and 1004 nodal degrees of free-
dom on the cracks. On the other hand, the mesh in
Fig. 11(b) consists of 650 nodal degrees of freedom
on the cell boundaries and 1008 nodal degrees of
freedom on the cracks. The stress interpolation
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Fig. 11 Crack propagation in two square micro-regions
containing 28 cracks, by X-VCFEM: (a) domain with hori-
zontal cracks of equal length and random distribution, (b)
domain with random orientation, length and distribution of

functions for each element are the same as dis-
cussed before. As a crack crosses the element boun-
dary or merges with another crack, the wavelet
terms in the stress interpolations are adjusted fol-
lowing the procedure described in Sect. 3.4. To
understand the effect of the cohesive parameters
on crack propagation, two different sets of
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cracks but containing a cluster, (¢,d) contour plots of oy,
(MPa) with cohesive parameters CPI for the domains in
(a) and (b), (e.f) contour plots of oy, (MPa) with cohesive
parameters CP2 for the domains in (a) and (b)

cohesive parameters are considered:

e CPl:0px=1.0MPa, §,=1.0 e-5m, g = 0.707
o CP2: 0 5x=2.0MPa, §,=0.5 e-5mm, 8 = 0.707

A uniform tension load o per unit length is applied
on the top and bottom surfaces as shown in Fig.
11(a,b). The applied load is increased in a total of
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9 increments and is scaled by the arc-length param-
eter for load equilibrium corresponding to a pre-
scribed crack opening.

Figure 11(c,d) and (e,f) show the stress o, con-
tour plots along with evolved position of the cracks
for the two sets of microstructures and cohesive
parameter, respectively. The plots are shown for
the final load increment. The growth pattern of
each crack can be observed by comparing with
its initial configuration in Fig. 11(a) and (b). The
cracks propagate across element boundaries, inter-
act with each other and in some cases merge. The
dependence of the propagation of multiple cracks
on the morphology and cohesive parameters is
complicated, in general. However, several obser-
vations can be made based on the results of the
X-VCFEM simulations.

e Larger stress concentrations develop at tips
of cracks that are nearly perpendicular to the
direction of loading. Consequently, this subset
of cracks grows more easily than others that
are more aligned with the loading direction.
From Fig. 11(d) and (f), it can be seen that
some cracks that are nearly parallel to the load
direction never propagate.

e Stress concentrations are higher at tips of the
longer cracks. For the same external load, sec-
tions corresponding to longer cracks leave less
intact material, leading to higher stress con-
centrations. As a consequence, it is seen in Fig.
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Macroscopic strain .

11(d) and (f) that the longer cracks propagate
more than the shorter ones.

Irrespective of the initial orientation, the evol-
ved crack path tends to align in a direction per-
pendicular to the applied load direction. This
corresponds to an optimal direction for releas-
ing the cohesive fracture energy. This observa-
tion is dominant, when the influence of nearby
cracks on the local stress field is small. The local
stress field in this case is mainly governed by
the influence of the applied load on this single
crack.

Cracks are attracted towards weak surfaces,
such as other cracks or voids and prefer to
propagate in those directions. This may be attri-
buted to the fact that the cohesive fracture en-
ergy in the direction of these weaker surfaces
with lower (or zero) tractions is naturally lower
in comparison with other directions. Higher
crack tip hoop stress appears on the side close
to the weak surface, e.g. near another crack.
This drives the crack propagation in that direc-
tion towards the other crack, eventually result-
ing in a merger. Once a crack merger occurs,
the high concentrated stresses no longer exist
near the merged regions, and hence the crack
ceases to propagate further.

Cracks in the two configurations of Fig. 11(a)
and (b) behave very differently due to the evo-
lution of local stress and cohesive energy. Even
though the two cracks at the upper right cor-
ner are initially not that dissimilar, their final



Multiple cohesive crack growth in brittle materials

391

Fig. 13 Macroscopic

stress—strain response for [ T P T T T ]
different microstructural A
morphologies and 5L i
cohesive parameters =

% ; 6—o Microstructure 1 with CP1

< F £ =- -8 Microstructure 1 with CP2 i

e ; 4--0 Microstructure 2 with CP1

s ; A—a Microstructure 2 with CP2

N - —

g 10 ,’.

«\ [

Q Y T

g. I l! e [ XEEEA AR - . t

2 [ 4 o-0-——¢m

g sk & _

i ¥

= f'/

]
0 1 l 1 I 1 I 1 I
0 Se-08 le-07 1.5¢-07 2e-07

configurations in the Fig. 11(e) and (f) are quite
different. Different crack mergers are observed
for these two cases. For Fig. 11(a), the crack on
the upper right hand corner propagates to the
domain boundary and this causes a big change
in the stress state at the crack tip, affecting
the crack propagation direction. While the two
cracks at the upper right corner of Fig. 11(a) do
not merge, they do in Fig. 11(b) due to different
evolving stress states.

e Figure 11(d) and (f) show that the longest crack
does not necessarily evolve from a cluster. Not
all cracks in a cluster grow considerably. This
is somewhat in contrast to observations made
with particle reinforced composites, where
almost always clusters cause a local stress con-
centration. The interaction between neighbor-
ing cracks contributes to the enhancement or
mitigation of stresses, depending on their ori-
entations and length. This dictates their prop-
agation and just being in a cluster does not
guarantee significant growth.

e Different cohesive parameters show very lit-
tle difference in the final configuration and
hence the propagation direction. However, the
rate of crack growth varies considerably with
these parameters as seen in the crack length-
macroscopic strain plot of Fig. 12.

Figure 13 shows the macroscopic stress—strain
response for the two microstructures and cohe-
sive parameters. Even before the cracks propagate
(signaled by the change in slope), the stiffness of

Macroscopic Strain €.

the microstructure 2 is higher than that of micro-
structure I due to a higher level of effective damage
caused by crack lengths and more importantly ori-
entations. Orientations perpendicular to the load
direction cause a larger reduction in stiffness in
comparison with other directions. With additional
loading, the overall damage caused by the growth
of cracks is also higher for the microstructure 1.
This is seen by the lower values of the macro-
scopic stress for this case. The effect of the cohesive
parameters on the stress—strain response is quite
pronounced. The maximum macroscopic stress for
both microstructures increases significantly for
higher values of omax, even though the cohesive
fracture energy is the same for the two cohesive
models. This is caused by a slowdown in the growth
rate of the cracks with overall deformation.

6 Concluding remarks

In this paper, an extended Voronoi cell finite ele-
ment model or X-VCFEM developed in Li and
Ghosh (2006) is further augmented to accommo-
date crack coalescence. The resulting X-VCFEM
model is used to predict multiple crack interaction
and propagation in brittle materials. X-VCFEM
incorporates special enhancements to the stress
functions in a hybrid assume stress element for-
mulation to the element to allow stress disconti-
nuities across the cohesive crack and to accurately
depict the crack tip stress concentrations. These
features are accommodated through the incorpo-
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ration of branch functions in conjunction with level
set methods across crack contours, and adaptive
multi-resolution wavelet functions in the vicinity of
the crack tip. This results in a powerful numerical
model that avoids the use of cumbersome reme-
shing or mesh refinement with growing cracks. The
cracks are modeled by an extrinsic cohesive zone
model, for which the stress jump at zero displace-
ment can be easily modeled by the hybrid stress-
based VCFEM. This is a special advantage of
VCFEM, which can use extrinsic models and thus
avoid intrinsic models that show mesh dependence.
A particular focus of this paper is on the effect of
cohesive parameters on crack growth. The incre-
mental growth directions and lengths of these
cracks are adaptively determined in terms of cohe-
sive fracture energy near the crack tip.

Various problems are solved with X-VCFEM
and compared with existing solutions in the litera-
ture to validate the model and show convergence.
The X-VCFEM results show excellent accuracy
and efficiency in comparison with other numer-
ical solutions and experimental solutions in the
literature. Numerical simulations with X-VCFEM
are then used to understand the effect of different
cohesive parameters on the crack propagation. In
addition to the total cohesive fracture energy, indi-
vidual cohesive parameters have significant effect
especially on the rate of crack growth. However,
the path of growth for single cracks is relatively
unaffected by the change in cohesive parameters.
Finally, a problem with multiple cracks is analyzed
to study the effect of morphology, e.g. length, po-
sition and orientations of cracks on their propa-
gation and interaction. The simulations reveal that
longer cracks that are nearly perpendicular to load-
ing direction are more amenable to grow larger at
a faster rate than other cracks. The crack prop-
agation direction is also dependent on the local
stress field, which is a function of both the external
load and local morphology, such as other cracks
in the neighborhood. In the recent years X-FEM
has proven to be an effective tool modeling mov-
ing discontinuities without the need for continuous
remeshing. X-VCFEM is also a significant addition
to this family. It has been proven to be a powerful
tool for analyzing large regions of the microstruc-
ture with multiple growing and interacting cracks.
Research is now underway for extending the
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evolving crack problem to heterogeneous micro-
structures with inclusions.
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