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ABSTRACT: This paper develops a 3D homogenization-based continuum damage
mechanics (HCDM) model for fiber reinforced composites undergoing micro-
mechanical damage. Micromechanical damage in the representative volume element
(RVE) is explicitly incorporated in the form of fiber–matrix interfacial debonding.
The model uses the evolving principal damage coordinate system as its reference
in order to represent the anisotropic coefficients. This is necessary for retaining
accuracy with nonproportional loading. The material constitutive law involves a
fourth order orthotropic tensor with stiffness characterized as macroscopic internal
variable. Damage in 3D composites is accounted for through functional forms of the
fourth order damage tensor in terms of macroscopic strain components. The HCDM
model parameters are calibrated by using homogenized micromechanical (HMM)
solutions for the RVE for a few strain histories. The proposed model is validated by
comparing the CDM results with HMM response of single and multiple fiber RVEs
subjected to arbitrary loading history. Finally the HCDM model is incorporated in a
macroscopic finite element code to conduct damage analysis in a structure. The effect
of different microstructures on the macroscopic damage progression is examined
through this study.

KEY WORDS: continuum damage mechanics, homogenization, interfacial debond-
ing, cohesive zone element, principal damage coordinate system.

INTRODUCTION

C
ONTINUUM DAMAGE MECHANICS (CDM) models provide a constitutive
framework for reflecting damage induced stiffness reduction with the
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introduction of effective damage parameters that represent overall material
degradation (Chaboche, 1981; Kachanov, 1987; Lemaitre and Chaboche,
1990; Krajicinovic, 1996; Nemat-Nasser and Hori, 1999; Voyiadjis and
Kattan, 2006). Damage and failure of composite materials is inherently a
multiple scale phenomenon coupling different scales of damage initiation
and progression. Two types of CDMmodels, namely phenomenological and
micromechanical models, have been proposed in the literature for modeling
failure of composite materials. The phenomenological CDM models
(Chaboche, 1981; Ortiz, 1985; Simo and Ju, 1987; Chow and Wang, 1987;
Matzenmiller et al., 1995; Chan et al., 2005) employ scalar, second order,
and fourth order damage tensors using mathematically and thermodyna-
mically consistent formulations of damage mechanics. Damage parameters
are identified through macroscopic experiments and in general, they do not
explicitly account for damage mechanisms in the microstructure. In
Desmorat et al. (2007), a generalized damage law has been developed in
terms of cumulative measure of internal sliding for monotonic, hysteretic,
dynamic, and fatigue loadings without explicit consideration of micro-
mechanics. The micromechanics-based approaches (Lene and Leguillon,
1982; Costanzo et al., 1995; Chaboche et al., 1998; Wriggers et al., 1998;
Fish et al., 1999; Choi and Tamma, 2001; Ladeveze, 2002; Sharma et al.,
2005; Ju et al., 2006), on the other hand conduct micromechanical analysis
of a representative volume element (RVE) with subsequent homogenization,
to predict evolving material damage behavior. The model by Ladeveze
(2002) connects micromechanics with continuum for developing an
anisotropic damage model with crack closure effects. Three homogenized
parameters represent damage in the cracked ply and their dependence on
stacking sequence is determined through 2D plane stress micromechanical
simulations. Different damage mechanisms such as transverse microcrack-
ing, delamination, and fiber–matrix debonding are considered in this model.
Various models in Allix and Hild (2002) also discuss similar development of
the CDM models. With the exception of a few e.g., (Voyiadjis and Kattan,
1992; Fish et al., 1999; Kouznetsova et al., 2001; Raghavan and Ghosh,
2005; Voyiadjis et al., 2007), most damage models do not account for the
evolution of damage or the effect of loading history. Significant error can
consequently accrue in the solution of problems, especially those that
involve nonproportional loading. Some of these homogenization studies
have overcome this shortcoming through the introduction of simultaneous
RVE-based microscopic and macroscopic analysis in each load step (Fish
et al., 1999; Feyel and Chaboche, 2000; Massart et al., 2007). However, such
approaches can be computationally very expensive since detailed micro-
mechanical analyses need to be conducted in each load step at every
integration point in elements of the macroscopic structure.
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To overcome the shortcomings of macro–micro modeling of composites
for predicting damage, Ghosh and coworkers (Raghavan and Ghosh, 2005;
Ghosh et al., 2007) have developed a computationally efficient, anisotropic
homogenization-based continuum damage mechanics (HCDM) model for
composites undergoing microstructural damage. Specifically fiber–matrix
interface debonding has been taken as the microstructural damage mechan-
ism in these two dimensional analyses, for which micromechanical analyses
are conducted by the Voronoi cell FEM model (Ghosh et al., 2000; Li and
Ghosh, 2004).This model is constructed by homogenizing evolving damage
variables in micromechanical analyses of a representative microstructural
volume element of the composite. The homogenization-based continuum
damage model (HCDM) has been successfully used for macroscopic analysis
in multi-scale modeling of composites undergoing fiber–matrix interfacial
debonding in Ghosh et al. (2007). In a multi-scale modeling framework, the
use of a continuum damage mechanics model in regions of noncritical
diffused damage evolution makes the overall computing extremely efficient.
This model can avoid the need to perform micromechanical analysis at each
load increment. However, it is necessary to zoom into the microstructure and
perform pure microscopic analysis in critical regions of dominant crack
propagation or localized instability to accurately predict catastrophic failure
(Raghavan and Ghosh, 2004; Ghosh et al., 2001, 2007).

The 2D HCDM model in Raghavan and Ghosh (2005) does not
incorporate the effects of the path dependent load history on the damage
variables. Hence, its predictions are not accurate for e.g., nonproportional
loading cases. The present paper develops a 3D HCDM model that can
overcome these limitations through the introduction of a principal damage
coordinate system (PDCS), which evolves with the load history. Such a
coordinate system has been used in Chow et al. (2001) to predict formability
of viscoplastic materials. The 3D HCDMmodel introduces functional forms
of a fourth order damage tensor in terms of macroscopic strain components
that are calibrated by micromechanical RVE analysis along different strain
loading paths. Anisotropy and its evolution are also effectively treated in this
model. Parametric representation of various damage tensors significantly
enhances computational efficiency by avoiding the cumbersome strain space
interpolations in Raghavan and Ghosh (2005). The HCDM model can be
conveniently incorporated in any finite element code for efficient modeling of
damage evolution in composite structures due to degrading microstructures.

The CDM model proposed has two main attributes. It has a very strong
connection with the micromechanical phenomena. For example, one can
relate the macroscopic damage energy to the amount of debonding or fiber
cracking in the microstructure for any composite architecture. Thus, it can
be used as an effective tool for microstructure design. The second is, through
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the development of the CDM model, one can avoid tedious micro–macro
computations, while getting the same accuracy and dependence on the
microstructure and micromechanics. Hence, it can be coupled and used in
any commercial software for major structural analyses.

This paper starts with a brief review of anisotropic continuum damage
mechanics models of (Raghavan and Ghosh, 2005) in ‘Anisotropic
Continuum Damage Mechanics Model’ section. ‘Micromechanical RVE
Model and Homogenization’ section describes the micromechanical model
with interfacial debonding followed by its homogenization. An orthotropic
homogenization-based CDM or HCDM model is developed in the principal
damage coordinated system (PDCS) is discussed in ‘Evolution Equations for
the Homogenization-based CDMModel’ section. This section also discusses
parameter calibration. ‘Implementation of the HCDM Model in a
Macroscopic Analysis Module’ section provides the stress update procedure
with HCDM in its implementation in a macroscopic finite element code for
structural analysis. Validation of the HCDM model and a demonstrative
structural application are presented in sections ‘Numerical Examples
for Validating the HCDM Model’ and ‘Macro–Micro Analysis of a
Composite Structure with the HCDM Model’ respectively. The effect
of different microstructures on the structural damage growth is examined in
these analyses.

ANISOTROPIC CONTINUUM DAMAGE MECHANICS MODEL

The general form of CDM models (see e.g., Kachanov, 1987), introduces
a fictitious stress ~�ij acting on an effective resisting area ( ~A). This is caused
by reduction of the original resisting area A due to material degradation due
to the presence of micro-cracks and stress concentration in the vicinity of
cracks. In Simo and Ju (1987) and Raghavan and Ghosh (2005), the effective
stress ~�ij is related to the actual Cauchy stress �ij through a fourth order
damage effect tensor Mijkl as

~�ij ¼ MijklðDÞ�kl ð1Þ

whereMijkl is a function of a damage tensorD ð¼ Dijklei � ej � ek � elÞ.D can
be a zero-th, second, or fourth order tensor, depending on the model
employed. The hypothesis of equivalent elastic energy (Cordebois and
Sidoroff, 1982; Chow and Wang, 1987) is used to evaluateMijkl and establish
a relation between the damaged and undamaged stiffnesses. As discussed in
Voyiadjis and Kattan (1992, 2006), this hypothesis specifically assumes that
the elastic complimentary energy WC in a damaged material with the actual
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stress is equal to that in a hypothetical undamaged material with a fictitious
effective stress, i.e.,

WCðD,DÞ ¼
1

2
ðEijklðDÞÞ

�1�ij�kl ¼ WCð ~�, 0Þ ¼
1

2
ðE o

ijklÞ
�1 ~�ij

~�kl ð2Þ

where R ¼ �ijei � ej, E
o
ijkl is the elastic stiffness tensor in the undamaged

state and EijklðDÞ is the stiffness in a damaged state. From Equations (1) and
(2), the relation between the damaged and undamaged stiffnesses is
established as

Eijkl ¼ ðMpqijÞ
�1E o

pqrsðMrsklÞ
�T

ð3Þ

where the exponent �T corresponds to the transpose of the inverse of the
fourth order M tensor. With the choice of an appropriate order of the
damage tensor and the assumption of a function for Mijkl, Equation (3) can
be used to formulate a damage evolution model using micromechanics and
homogenization. The anisotropic CDM model involving fourth order
damage tensor, proposed in Raghavan and Ghosh (2005), introduces a
damage evolution surface to delineate the interface between damaged and
undamaged domains in the strain space (eij) as

F ¼
1

2
Pijkleijekl � �ð�WdÞ ¼ 0 ð4Þ

where Wd is the dissipation of the strain energy density due to stiffness
degradation that is expressed as (Carol et al., 1994):

Wd ¼

Z
1

2
eijekldEijkl ð5Þ

Assuming associativity rule in the stiffness space, the evolution of the fourth
order secant stiffness is obtained as

_Eijkl ¼
_l

@F

@ð12 eijeklÞ
¼ _lPijkl ð6Þ

Pijkl is a fourth order symmetric negative definite tensor that corresponds to
the direction of the rate of stiffness degradation tensor _Eijkl, � is a scaling
parameter and �ð�WdÞ is a damage state variable. Calibration of the CDM
model requires evaluation of k, �, and Pijkl in Equation (4). Calibration is
done by comparison of the CDM model results with those from
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homogenization of micromechanical RVE analysis, subject to different loads.
Based on this comparison, Pijkl is found to vary as a function of the strain eij,
� is a constant and k is a function ofWd. Details of the calibration process are
discussed in ‘Evolution Equations for the Homogenization-based CDM
Model’ section.

The CDM Model in Principal Damage Coordinate System

For a second order damage tensor Dij, the damage effect tensor Mijkl in
Equation (1) has been formulated in Murakami (1988) as:

Mijkl ¼ ð�ik �DikÞ
�1�jl ð7Þ

Dij is symmetric and it can describe the damage states which have at least
orthotropic symmetry. For any arbitrary Dij the corresponding effective
stress tensor, obtained by substituting Equation (7) in Equation (1), may be
unsymmetric. An implicit method of rendering the stress tensor symmetric
has been suggested in Voyiadjis and Kattan (1996), which corresponds to a
representation of the stress tensor in a fixed global coordinate system as

�ij ¼
~�ikð�kj �DkjÞ

�1
þ ð�il �DilÞ

�1 ~�lj

2
ð8Þ

The corresponding inverse of the damage effect tensor ½MðDijÞ�
�1 is

represented in a matrix form as:

½MðDijÞ�
�1

¼

1�D11 0 0 0 �D13 �D12

0 1�D22 0 �D23 0 �D12

0 0 1�D33 �D23 �D13 0

0 � 1
2D23 � 1

2D23 1� 1
2 ðD22 þD33Þ �D12 �D13

� 1
2D13 0 � 1

2D13 � 1
2D12 1� 1

2 ðD11 þD33Þ �D23

� 1
2D12 � 1

2D12 0 � 1
2D13 � 1

2D23 1� 1
2 ðD11 þD22Þ

2
666666666666664

3
777777777777775
ð9Þ

This can be substituted in Equation (3) to update the damaged stiffness Eijkl

from the initial undamaged stiffness E o
ijkl.

Numerical examples by the authors in Raghavan and Ghosh (2005) have
shown that material symmetry is considerably affected by damage evolution
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in composite microstructures. Different load paths will yield different
damage evolution profiles in the microstructure. This will result in different
changes of the material symmetry in Eijkl. For example, in a fixed coordinate
system, an RVE exhibiting orthotropy in E o

ijkl can exhibit general anisotropy
with evolving damage under multi-axial loading. The anisotropic E ijkl will
couple normal and shear strain components in the elastic energy expression
in the fixed coordinate system. However, when the strains are represented in
a coordinate system that corresponds to the principal damage axes, the
coupling terms in the stiffness Eijkl reduce to near vanishing values and the
initial symmetry properties are retained.

The present work assumes orthotropy of the homogenized stiffness matrix
in the PDCS. The damage effect tensor Mijkl corresponding to Equation (9)
has a diagonal representation in this coordinate system and consequently,
the initial material symmetry is retained throughout the damage evolution
process. Determination of the continuously evolving PDCS requires the
determination of the second order damage tensor Dij and subsequent
evaluation of its eigenvectors at each step of the incremental loading
process. For known values of E o

ijkl and Eijkl, substitution of Equation (9) in
Equation (3) results in a system of nonlinear algebraic equations in Dij. Since
there are nine independent components of the orthotropic stiffness tensor
Eijkl and six independent components of the symmetric Dij, a nonlinear least
squares minimization solver is used to solve for Dij. Subsequently, the
eigenvectors of Dij, namely eD1, eD2, and eD3 are evaluated and the
transformation matrix ½Q�

D
¼ ½eD1 eD2 eD3� is formed. The rotation matrix

½Q�
D transforms the global coordinate system to the PDCS.

Evolution of PDCS for Different Load Histories

To examine the evolution of PDCS with different load histories, a
micromechanical analysis problem of a simple unit cell RVE is conducted.
The elastic RVE consists of a circular fiber of 20%volume fraction in a square
matrix as shown in Figure 1. To allow debonding, the fiber–matrix interface is
modeled using cohesive zone elements as discussed in ‘Micromechanical RVE
Model and Homogenization’ section. Micromechanical analysis is followed
by homogenization to evaluate evolving stiffnesses in the composite. Two
load histories are considered for the analyses.

1. Case a: Proportional loading with strain path ðe12=e11Þ ¼ constant ð6¼ 0Þ
and e22 ¼ 0.

2. Case b: Nonproportional loading with two loading segments: (i) strain
path of e11 6¼ 0, e22 ¼ e12 ¼ 0 in the first half of the loading; (ii) strain
path of ðe12=e11Þ ¼ constant ð6¼ 0Þ, e22 ¼ 0 in the second half.
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The final state of the macroscopic strain eij is identical for both the cases.
Along each of these load paths, the homogenized secant stiffness of the
damaging material Eijkl is calculated, followed by determination of the
PDCS. Figure 1(a) and (b) show the orientation of the PDCS in the final
deformed configuration for the two cases. For the proportional loading case
(a), the orientation of the damage axes jumps to and remains fixed at 248
with respect to the global axes throughout damaging process. For the
nonproportional loading case (b), the PDCS coincides with the global
coordinate system in simple tension during the first half of loading. In the
last half of the loading, the PDCS continuously rotates to a final position of
218 orientation. Certainly in this case, the PDCS rotation should be
incorporated in the homogenization-based continuum damage mechanics or
HCDM model to account for the damage history.

MICROMECHANICAL RVE MODEL AND HOMOGENIZATION

Micromechanical analyses of identified RVEs of the composite micro-
structure are necessary ingredients for the development of a homogeniza-
tion-based continuum damage mechanics or HCDM model. Important
aspects of a 3D micromechanical model are discussed next.

Cohesive Zone Model for Interfacial Debonding

A 3D micromechanical model for composite microstructures undergoing
fiber–matrix interfacial debonding has been developed in Swaminathan

(a) (b)

24° 21°

X ′ X ′

X X

Y ′ Y ′Y Y

Figure 1. Rotation of the PDCS for (a) proportional and (b) nonproportional load histories.
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et al. (2006b). In this model, the fiber–matrix interface behavior in the
normal and tangential directions is described by a nonlinear 3D cohesive
zone model with bilinear traction–displacement relations. Bilinear cohesive
zone models have yielded satisfactory agreement with experiments for
composites described in Chandra et al. (2002) and Li and Ghosh (2004). The
interface is represented by a set of cohesive springs of infinitesimal length
that are attached to the fiber and the matrix at opposite ends. With
increasing displacement the traction across the interface reaches a maximum
value, then decreases with further displacement increase, and finally
vanishes indicating failure of the spring. Needleman (1990, 1992) has
proposed cohesive zone models with polynomial and exponential functions
for the traction–displacement jump relation. Ortiz and co-workers
(Camacho and Ortiz, 1996; Ortiz and Pandol, 1999) have developed
irreversible cohesive laws for the unloading path after the interfacial
softening.

In the cohesive zone model used in this work, the relation between

traction Tð¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
T 2

n þ T 2
t1 þ T 2

t2

q
Þ and the effective opening displacement

�ð¼ kum � ufkÞ is given in terms of a free energy potential as

T ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
T 2

n þ T 2
t1 þ T 2

t2

q
¼

@�ð�n, �t1, �t2, qÞ

@�
ð10Þ

where (T n,T t1,T t2) are normal and tangential components of the
interfacial traction and q are internal variables that account for the inelastic
process of decohesion. The effective opening displacement jump, � , in 3D is
defined as

� ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
�2n þ �2�2t

q
ð11Þ

Here, �n is the displacement jump in normal direction, �tð¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
�2t1 þ �2t2

q
Þ is the

net displacement jump in tangential direction across the interface. � is a
factor that controls the contribution of the tangential component to the
effective displacement jump. The scalar form of the T� � relation in the
bilinear model is obtained from equation (9) as

T ¼

�max

�c
� if � � �c (hardening region)

�max

�c � �e
ð�� �eÞ if �c5� � �e ðsoftening regionÞ

0 if � > �e ðcomplete debondingÞ

8>>>>><
>>>>>:

ð12Þ
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Consequently, the normal and tangential tractions are derived from the
relations:

T n ¼
@�

@�n

�max

�c
�n if � � �c

�max

�

�� �e
�c � �e

�n if �c5� � �e ði ¼ 1, 2Þ

0 if � > �e

8>>>>><
>>>>>:

ð13Þ

and

Tti ¼
@�

@�ti

�max

�c
�2�ti if � � �c

�max

�

�� �e
�c � �e

�2�ti if �c5� � �e ði ¼ 1, 2Þ

0 if � > �e

8>>>>><
>>>>>:

ð14Þ

For a positive normal displacement �n, the traction at the interface increases
linearly to a maximum value of max �max corresponding to �c. After that, the
traction starts decreasing with increasing separation and finally reaches zero
at a value of �e. The unloading behavior in the hardening region follows the
same slope as that of the loading path. In the softening region, unloading is
assumed to follow a different linear path back from the current position to
the origin with a reduced stiffness. This is expressed as

T ¼
�max

�max

�max � �e
�c � �e

� �c5�max5�e and �5�max ð15Þ

Reloading follows the unloading slope till it meets the point of unloading
in the softening plot, and then continues along the softening plot. This
demonstrates the irreversible nature of the damage process. The normal
component of the traction is transferred through the normal springs, while
the shear component of the traction is transferred through the tangential
springs. Both the normal and the tangential tractions vanish when interface
debonds completely i.e., � � �e. Also, the magnitudes of the tangential
traction–displacement relation are independent of the sign, and hence the
behavior is the same for both positive and negative tangential separations �i1
and �i2. If the normal displacement is negative, i.e., during compression, stiff
penalty springs with high stiffness are introduced between the node-pairs at
the interface to prevent penetration.
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Implementation of the Cohesive Zone Model in the RVE Model

The 3D interface elements using the cohesive laws are developed in the
user defined element (UEL) subroutine of the commercial FE code ABAQUS
(Abaqus, 2001). As detailed in Swaminathan et al. (2006b), the interface
elements are made up of two eight-noded quadrilateral surfaces that
are compatible with the standard 20-node brick elements. The corresponding
cohesive interface elements have 16 nodes with a quadratic displacement
interpolation, which leads to a total of 48 degrees of freedom per
element. Integration in each element is conducted by Gaussian quadrature
using nine integration points. The cohesive interface elements are compatible
with the 20-noded quadratic brick elements that are used to model the
fiber and matrix phases. A typical RVE model developed for analysis in
ABAQUS is shown in Figure 2(a). In the initial unloaded state, the interface
nodes on the matrix and fiber surfaces share the same coordinates. With the
application of an external loads and displacements, the interface surfaces
move and separate from one another, as the adjacent solid elements
deform. The relative normal and tangential tractions for the interface
elements are calculated at the element integration points according to the
traction separation laws Equation (10)–(14) in the cohesive zone
model. Details of the implementation procedure has been discussed in
Swaminathan et al. (2006b).

Homogenization and Stiffness Evaluation

Components of the homogenized elastic stiffness tensor Eijkl, are
calculated by solving six independent micromechanical boundary value
problems of the RVE. The RVE is each case is subjected to periodicity
displacement conditions on the boundary. These conditions are enforced by
constraining nodes on opposite faces of the RVE boundary to deform in a
periodic manner. A given macroscopic or average strain eij is applied on the
RVE by decomposing the displacement on the boundary into a macroscopic
averaged and a periodic part as discussed in Pellegrino et al. (1999) and
Segurado and Llorca (2002), i.e.,

ui ¼ eijxj þ ~ui ð16Þ

Since the periodic part ~ui is equal on corresponding nodes of opposite faces of
the RVE (say n

p
1 and n

p
2), the total displacement at these nodes are related as

ðuiÞn p
2
� ðuiÞn p

1
¼ eij�xj ð17Þ

Homogenization-based Continuum Damage Mechanics Model 11

+ [Ver: 8.07r/W] [18.9.2008–10:15am] [1–36] [Page No. 11] REVISED PROOFS {SAGE_REV}Ijd/IJD 091563.3d (IJD) Paper: IJD 091563 Keyword



where �xi are the relative coordinates of nodes on opposite faces. Macro-
scopic strains are then applied, in conjunction with the periodicity constraints,
by fixing a corner node and specifying the displacement on master nodes
M1,M2; and M3 that belong to orthogonal faces as shown in Figure 2(a).

For evaluating the homogenized elastic stiffness tensor Eijkl, periodic
boundary value problems of the RVE are solved by applying only a single unit
strain component. These correspond to six boundary value problems:Case 1:
e11 ¼ 1:00, all other components=0.0, Case 2: e22 ¼ 1:00, all other compo-
nents= 0.0, Case 3: e12 ¼ 1:00, all other components= 0.0, etc. Finally, the
homogenized ormacroscopic stresses�ij are obtained by volume averaging as

�ij ¼
1

Y

Z
Y

�ijðYÞdY ð18Þ

RVE (a) RVE (b)

(a) (b)

(c) (d)

RVE (c) RVE (d)

M2

M1

M3

2

1

3
z

y
x

z

y

x

z

y

x
z
y

x

ANSYS 11.0

Figure 2. Finite element mesh for (a) RVEwith a cylindrical fiber, (b) RVEwith an elliptical fiber,
(c) RVE with hexagonal arrangement of fibers, and (d) RVE with two perpendicular fibers.
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In addition the homogenized strains, required for calibrating the HCDM
model, are evaluated by volume averaging the micromechanical solutions as

eij ¼
1

Y

Z
Y

�ijðYÞdYþ
1

2Y

Z
@Yint

ð½ui�nj þ ½uj�niÞdS ð19Þ

Here, �ij and �ij are RVE-based microscopic stresses and strains, respectively
and Y is the RVE domain. Yint corresponds to the fiber–matrix interface
domain and [ui] denotes the jump in displacement components across the
interface with outward normal ni.

EVOLUTION EQUATIONS FOR THE

HOMOGENIZATION-BASED CDM MODEL

The damage evolution surface of Equation (4) is rewritten in the PDCS as

F 0 ¼
1

2
e0ijP

0
ijkle

0
kl � �0ðWdÞ ¼ 0 ð20Þ

where the prime in the superscript denotes quantities expressed in the PDCS
using the transformation laws

E 0
ijkl ¼ QipQjqQkrQlsEpqrs and e0ij ¼ QikQjlekl ð21Þ

and Qij is the transformation matrix. The corresponding rate of stiffness
degradation in PDCS is

_E 0
ijkl ¼

_l
@F 0

@ð12 e
0
ije

0
klÞ

¼ _lP0
ijkl ð22Þ

Parametric Forms and Parameter Calibration

DAMAGE STATE VARIABLE k0

The damage function �0ð�WdÞ is evaluated for a reference loading path, and
results for all other strain paths are scaled with respect to this reference value.
For the reference loading path (e011 6¼ 0, all other e0ij ¼ 0), setting P0

1111 ¼ 1, k0

is determined from damage surface of Equation (20) as

�0 ¼
1

2
ðe011Þ

2
ð23Þ
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The function �0ðWdÞ is determined from the micromechanical analysis by
evaluating Wd at each strain increment. The �0 �Wd plots for four different
strain paths are shown with circular marks in Figure 3. The loading cases are:

(Case 1:) Simple shear: e12 ¼ 0:012
(Case 2:) Tension–torsion: e11 ¼ 0:006, e12 ¼ 0:010
(Case 3:) Multi-axial tension–torsion: e11 ¼ 0:009, e22 ¼ 0:002, e12 ¼ 0:006
(Case 4:) Uniaxial tension: e11 ¼ 0:012
Wd remains zero in these plots, till k0 exceeds a threshold value

corresponding to the initiation of debonding induced microscopic damage.
Subsequently, Wd increases rapidly, signaling substantial material deteriora-
tion during the initial stages of damage. Eventually, Wd saturates at a value
WF

d corresponding to configuration with arrested debond or fully debonded
interface. Very little material degradation due to damage occurs beyond this
saturation value. The behavior of the plots are similar; however, the value of
WF

d differs for the different strain histories. The variability of the saturation
damage energyWF

d with different loading paths in the 3D strain space can be
taken into account using the scaling factor �ðeijÞ in Equation (4). However,
such an approach requires evaluation and storage of �ðeijÞ for a large
number of individual loading paths for interpolation.

0 0.5 1 1.5 2 2.5 3 3.5 

× 10−5

× 10−5

0

1

2

3

4

5

6

7

8

k
′

HMM data points
HCDM parametric fit

Case 1

Case 2 Case 3
Case 4

Wd

Figure 3. Functional representation of the �0 �Wd relation from homogenized micro-
mechanics (HMM) data points.
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To avoid this approach in the 3D analysis, novel functional forms of k0

are introduced to explicitly describe its dependence on the macroscopic
strain components eij, as well as on Wd. Three invariant forms of the strain
components, consistent with anisotropic material properties model are used
in these functions. They are:

I1 ¼
1

3
Ae11 þ Be22 þ Ce33ð Þ

J2 ¼ F ed22 � ed33
� �2

þG ed33 � ed11
� �2

þH ed11 � ed22
� �2

þL ed12
� �2

þM ed13
� �2

þN ed23
� �2

J3 ¼ O ed11e
d
22e

d
33

� �
þ P ed11ðe

d
23Þ

2
� �

þQ ðed12Þ
2ed33

� �
þ R ed13e

d
12e

d
23

� �
þ S ðed13Þ

2ed22
� �

ð24Þ

where edij ¼ eij �
1
3 �ijekk is the deviatoric strain tensor. The invariants I1, J2,

and J3 are respectively linear, quadratic, and cubic functions of eij. The
constants A,B,C,F,G, . . . ,S are introduced to characterize the state of
anisotropy in the damaged material. The function J2 is similar to that used in
the anisotropic yield criterion for elasto-plasticity proposed by Hill (1948).
The functional form of �0 is developed to conform to the plots of Figure 3, and
is expressed as:

�0ðI1, J2, J3,WdÞ ¼ b0 þ fðI1, J2, J3Þ 1þ b1tanðb2WdÞ½ � ð25Þ

The form decomposes its dependence on the dissipation energy and the
strain. The latter dependence is represented by a polynomial function of the
invariants as:

fðI1, J2, J3Þ ¼ a0 þ a1I1 þ a2J2 þ a3J3 þ a4I
2
1 þ a5I1J2 þ . . . ð26Þ

The constants A,B,C, . . . in Equation (24), b0, b1, b2 in Equation (25), and
a0, a1, . . . in Equation (26) are determined by a nonlinear least squares
minimization of the difference between results of micromechanical analysis
and those from the functional form in Equation (25), i.e.,

minimize
XNref

i¼1

�0ref � �0ðI1, J2, J3,WdÞ
� �2

i
ð27Þ

Micromechanical analysis of the RVE is conducted for Nref different strain
histories to explicitly compute the values of �0ref. A fifth order polynomial
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function in Equation (26) yields good convergence properties for the least
square residual. Figure 3 satisfactorily compares the �0 �Wd plots by the
function in Equation (25) with results from the micromechanical analysis for
the different strain paths.

DAMAGE SURFACE PARAMETER P 0
ijkl

In the incremental finite element formulation for evolving damage, the
backward Euler method is used to integrate the rate of stiffness degradation
in Equation (22). Corresponding to the strain increment from step n to
step nþ 1, the parameter P0

ijkl may be expressed as

ðP 0
ijklÞnþ1 ¼

ðE 0
ijklÞnþ1 � ðE 0

ijklÞn

lnþ1 � ln
ð28Þ

where ðE 0
ijklÞnþ1 is the secant stiffness at the end of the increment. As explained

in ‘Cohesive Zone Model for Interfacial Debonding’ section, the secant
stiffness is calculated by unloading to the origin from the current state of
stress. Substituting this into the damage evolution Equation (20) at the end of
the increment yields the incremented form of the damage surface as

1

2
ðe0ijÞnþ1

ðE 0
ijklÞnþ1 � ðE 0

ijklÞn

lnþ1 � ln

� �
ðe0klÞnþ1 � �0nþ1 ¼ 0 ð29Þ

where �0nþ1ðI1, J2, J3,WdÞ represents the size of the parametric damage
surface and ðWdÞnþ1 at the end of the interval is evaluated by using the
backward Euler integration method. The parameter lnþ1 is then evaluated
from the relation

lnþ1 ¼ ln þ
1
2 ðe

0
ijÞnþ1 ðE0

ijklÞnþ1 � ðE0
ijklÞn

� 	
ðe0klÞnþ1

�0nþ1

ð30Þ

ðP0
ijklÞnþ1 may be subsequently determined from Equation (28). The direction

of the rate of stiffness degradation varies continuously with damage
evolution with increasing loads. From Equation (22) this implies that P0

ijkl

also varies accordingly. A polynomial function form is derived for the
components P0

ijkl in terms of the anisotropic invariants of strain defined in
Equation (24), as

P0
ijklðI1, J2, J3Þ ¼ cijkl0 þ cijkl1 I1 þ cijkl2 J2 þ cijkl3 J3 þ cijkl4 I21 þ cijkl5 I1J2 þ . . . ð31Þ

Again, the coefficients cijklp in Equation (31) are determined by a nonlinear
least square equation solver. In this method, the square of the difference in
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P0
ijkl obtained from micromechanical analysis and the functional form for a

few representative strain paths, is minimized, i.e.,

minimize
XNref

i¼1

ðP0
ijklÞref � P0

ijklðI1, J2, J3Þ
h i2

i
ð32Þ

The subscript ‘ref ’ corresponds to data points obtained from micromecha-
nical analysis. Figure 4 shows a comparison of the micromechanical results
and the calibrated function in Equation (31) for an RVE under uniaxial
tension. With a fifth order polynomial function (30), the root mean square
error is observed to be 5 3%. The coefficients can be used subsequently, for
computing P0

ijkl for any given strain eij during the macroscopic analysis.

IMPLEMENTATION OF THE HCDM MODEL

IN A MACROSCOPIC ANALYSIS MODULE

The HCDM model is implemented for macroscopic finite element
analysis using the user material interface (UMAT) in the commercial

0 1 2 3 4 5 6 7 8
−9
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−3
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e11

P
′ ijk

l

P2222 HMM data points

P2222 HCDM parametric fit

P3333 HMM data points

P3333 HCDM parametric fit

P1122 HMM data points

P1122 HCDM parametric fit

P1212 HMM data points

P1212 HCDM parametric fit

P2323 HMM data points

P2323 HCDM parametric fit

× 10−3 

Figure 4. Functional representation of P0
ijkl � e11 relation for uniaxial tension from

homogenized micromechanics (HMM) data points.
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code ABAQUS. In an incremental solution process, subscripts n and nþ 1
correspond to values at the beginning and end of the n- th increment,
respectively. At each integration point of an element in the FE model, the
stresses ð�ijÞnþ1 are obtained from known values of the strain ðeijÞnþ1 and
state variables at n using the HCDM constitutive model. The essential steps
in the UMAT update algorithm for the n- th increment are described
subsequently.

1. Given ðeijÞnþ1, evaluate ðI1Þnþ1, ðJ2Þnþ1, and ðJ3Þnþ1 using Equation (24)
and subsequently ðP 0

ijklÞnþ1 using Equation (31).
2. Initialize variables at the start of each iteration algorithm for solving the

damage evolution problem.

. Assume that the starting value of the PDCS rotation tensor
ðQijÞ

0
nþ1 ¼ ðQijÞn.

. Evaluate the starting value of the damage surface function ðF 0
nþ1Þ

0

¼ 1
2 ðe

0
ijÞnþ1ðP

0
ijklÞnþ1ðe

0
klÞnþ1 � �0n.

. If ðF 0
nþ1Þ

0
� 0 there is no additional damage. In this case, proceed to

step 7 with unchanged secant stiffness tensor ðEijklÞnþ1 ¼ ðEijklÞn.

3. For the I-th iteration, damage evolution takes place if:
1
2 ðe

0
ijÞnþ1ðP

0
ijklÞnþ1ðe

0
klÞnþ1 � �0n > 0. In this case, determine:

. ð�0nþ1Þ
I
¼ 1

2 ðe
0
ijÞnþ1ððP

0
ijklÞnþ1Þ

I
ðe0klÞnþ1, and

. Wd by inverting the �0 �Wd relation in Equation (25) as

ððWdÞnþ1Þ
I
¼

1

b2
tan�1 1

b1

ð�0nþ1Þ
I
� b0

ðfnþ1Þ
I
ðI1, J2, J3Þ

� 1

 ! !
ð33Þ

4. Using the backward Euler method to integrate _Wd, determine

ðlnþ1Þ
I
¼ ln þ

2 ððWdÞnþ1Þ
I
� ðWdÞn

� �
ðe0ijP

0
ijkle

0
klÞ

I
nþ1

ð34Þ

5. Update the secant stiffness using the relation

ðE 0
ijklÞ

I
nþ1 ¼ ðE 0

ijklÞn þ ðlInþ1 � lnÞðP 0
ijklÞ

I
nþ1 ð35Þ

6. Determine the PDCS rotation matrix ðQijÞ
I
nþ1 from the eigenvectors of

ðDijÞ
I
nþ1, corresponding to the updated secant stiffness ðEijklÞ

I
nþ1 using the
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procedure described in section ‘The CDM Model in Principal Damage
Coordinate System’. If convergence in the rotation matrix is achieved, i.e.,

If max jððQijÞnþ1Þ
I
� ððQijÞnþ1Þ

I�1
j � TOL, 8i, j ¼ 1, 2, 3

then proceed to step 7. Otherwise, return to step 3 and continue iteration.
7. Update macroscopic stresses with the converged value of the secant

stiffness matrix (EijklÞnþ1 as

ð�ijÞnþ1 ¼ ðEijklÞ
I
nþ1ðeklÞnþ1 ð36Þ

NUMERICAL EXAMPLES FOR VALIDATING

THE HCDM MODEL

The orthotropic 3D homogenization-based CDM (HCDM) model is
validated by solving a few numerical examples. Results obtained from
macroscopic simulations using the HCDM model are compared with
homogenized micromechanical or HMM results for the RVE. The HMM
model is obtained by homogenizing or volume averaging the micromecha-
nical stresses and strains in the RVE subjected to periodic boundary
conditions with imposed macroscopic strain as done in Ghosh et al. (2001)
and Raghavan and Ghosh (2005). The macroscopic finite element model
implementing the HCDM constitutive relations, consists of a single eight-
noded quadrilateral element. Four 3D fiber–matrix composite RVEs with
different morphological arrangements are considered for this validation
study. These are:

. (a) Unidirectional 3D uniform composite microstructure with fibers
arranged in a rectangular array. The RVE is a unit cell containing a single
cylindrical fiber of volume fraction 20%. This is shown in Figure 2(a).

. (b) Unidirectional 3D uniform composite microstructure with fibers
arranged in a rectangular array. The RVE is a unit cell containing a single
fiber of elliptical cross-section as shown in Figure 2(b). Volume fraction is
20% and the aspect ratio of the elliptical cross-section is a/b=2.

. (c) Unidirectional 3D composite microstructure with hexagonal arrange-
ment of fibers. TheRVE contains cylindrical fibers as shown in Figure 2(c),
with a fiber volume fraction is 20%.

. (d) Cross-ply 3D composite microstructure with its RVE consisting of
two cylindrical fibers oriented at 908 with respect to each other as shown
in Figure 2(d). The fiber volume fraction in the RVE is 20%.
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Material properties of the elastic matrix are Em ¼ 4:6GPa, �m ¼ 0:4,
while for the elastic fiber they are Ec¼ 210GPa, �c ¼ 0:3. Cohesive zone
parameters for the interface are �c ¼ 5:0� 10�5 m, �e ¼ 20� 10�4 m, and
�m ¼ 0:02GPa.

Micromechanical analyses of the RVEs are conducted by enforcing
periodic displacement boundary conditions and imposing the macroscopic
strain fields on the RVE. Both proportional and nonproportional
macroscopic strain loading conditions are applied as follows:

1. L1 Proportional uniaxial tension loading: e11 6¼ 0, all other eij ¼ 0 for the
entire loading process. This is taken as the reference loading path.

2. L2 Proportional, combined tension/shear loading: e11 6¼ 0, e22 6¼ 0,
e12 6¼ 0, all other eij ¼ 0 for the entire loading process.

3. L3Nonproportional loading: e11 6¼ 0, all other eij ¼ 0 (uniaxial tension in
the first half of the loading); and e11 6¼ 0, e12 6¼ 0, all other eij ¼ 0
(combined tension/shear in the second half of the loading).

Contour plots of the microscopic stress in the different 3DRVEs, subjected
to uniaxial tension in the x1 direction are shown in Figures 5(a)–(d).
The figures also show the extent of debonding for all the microstructures.
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Figure 5. Microscopic stress contour plots in the RVEs (a), (b), (c), and (d), subjected to a
uniaxial tensile strain e11 ¼ 0:004.
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The various parameters in the HCDM model are calibrated for the
RVEs (a)–(d) following the procedure outlined in ‘Evolution Equations
for the Homogenization-based CDM Model’ section. The constants
A,B,C,F,G, . . . ,S in Equation (24) for the strain invariants are evaluated
for all four RVEs and reported in Table 1. The constants exhibits symmetry
with respect to x1 and x2 directions for the RVE (a), andwith respect to x1 and
x3 directions for the RVE (d) with two perpendicular fibers. Since there are
many calibrated constants in the expressions for �0 and P0

ijkl, only a few
representative values are given for the RVE (a) with a single cylindrical fiber.
These are: b0 ¼ 0:1E� 6; b1 ¼ 12:44; b2 ¼ 0:44E5; a0 ¼ 0:42; a1 ¼ 3:08;
a2 ¼ 2:44; a3 ¼ 74:2. For P1111, some of the constants are c11110 ¼ �1:16;
c11111 ¼ �0:144; c11112 ¼ �0:615; c11113 ¼ �0:144. Figures 6(a)–(d) show plots
of damage surface state variable � as a function of Wd and the first strain
invariant I1 for the RVEs (a)–(d), respectively. The functions are generated
using Equation (25). In all cases, �0 increases rapidly withWd, which attains a
maximum value as the damage in the RVE saturates. Although nature of the
�0 �Wd relation is similar for all cases, the sensitivity of � to I1 is seen to be
significantly different for various RVEs.

Figures (7)–(10) compare the macroscopic stress–strain plots obtained
from macroscopic analysis using HCDM with homogenized micromechani-
cal or HMM results for the three load cases considered. The excellent match
in most cases corroborates the satisfactory performance of the HCDM
model. An important observation from these results is the sensitivity of
the HCDM behavior to the microstructural architecture in response to

Table 1. Constants in the parametric representation
of I1, J2, and J3 in Equation (23) for various RVEs.

Constants in
Equation (23)

RVE in
Figure 2(a)

RVE in
Figure 2(b)

RVE in
Figure 2(c)

RVE in
Figure 2(d)

A 0.32 0.30 0.28 0.22
B 0.32 0.59 0.28 0.21
C 0.02 0.89 0.27 0.22
F 0.02 0.35 0.10 0.65
G 0.02 0.35 0.09 0.71
H 0.42 1.64 0.11 0.65
L 0.18 0.41 1.70 1.76
M 0.38 2.28 0.94 0.23
N 0.38 2.35 0.94 1.76
O 0.00 1.87 0.22 0.45
P 0.16 0.98 0.47 0.43
Q 0.34 0.05 0.24 0.43
R 0.13 0.41 0.26 0.07
S 0.16 0.13 0.47 0.12
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different loads. The RVE (a) subjected to loading (L1) shows rapid material
degradation with increasing strain as the interface undergoes debonding in
Figure 7(a). The stiffness stabilizes at a strain of 0.0012 when the interface
debonds completely. Similar trends are seen for the combined loading (L2) in
Figure 7(b), where material degradation is followed by a constant stiffness
phase corresponding to locked state. The merit of representing the HCDM
model in the PDCS is evident from the results of the nonproportional loading
case (L3) in Figure 7(c). The PDCS representation results in a remarkable
improvement of accuracy when compared to results in Figure 7(d), which are
obtained without incorporation of PDCS. The stress �11 in this case keeps
reducing in the second half of the loading. For the RVE (b) with the elliptical
fiber, stress concentration at the major axis as shown in Figure 5(b) causes
uneven debonding of the interface. This results in different behavior in
different directions even for uniaxial tension as shown in Figures 8(a)–(c).

The debonded configuration of the RVE (c) with hexagonal arrangement
of fibers with uniaxial loading is shown in Figure 5(c). The stress–strain
plots in Figures 9(a)–(c) for this RVE under various loading histories
show more gradual degradation than that for RVE (a) when compared
with Figures 7(a)–(c). Figures 10(a)–(c) show macroscopic stress–strain plots
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Figure 6. �0 �Wd plot as a function of I1 for RVEs (a), (b), (c), and (d).
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for the cross-ply composite RVE (d), shown in Figure 2(d). The �11

component of stress shows insignificant amount of softening for all three
loading cases. This is because, for a tensile load in the x1 direction, the major
share of the load is supported by the fiber in x1 direction. This fiber
continues to support the tensile load even after debonding occurs in this
fiber. Degradation of the elastic stiffness in the x1 direction occurs mainly
due to debonding at the interface of the fiber in the x3 direction, which is not
significant. On the other hand, the �22 plot for uniaxial tension (L1) case in
Figure 10(a) shows the effect of considerable damage. The initial elastic
response is followed by degradation, before stabilizing at a lower value of
stiffness. There are two phases of rapid degradation corresponding to
debonding of fibers in the x3 and x1 directions, respectively. The first is due
to rapid separation of the fiber in the x3 direction, whose axis is
perpendicular to the loading direction (Figure 5(d)). Due to symmetry,
degradation in the x2 direction is equally affected by debonding of fibers in
the x1 and x3 directions. When the RVE is subjected to tensile strain in the
x1 direction, imposed periodicity conditions in the three orthogonal
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Figure 7. Comparison of macroscopic stress–strain behavior obtained using HCDM and
homogenized micromechanics (HMM) for RVE with a cylindrical fiber (Figure 2(a)), for load
cases (a) L1, (b) L2, (c) L3, and (d) L3 without incorporation of PDCS.
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directions causes the material to experience tension in these directions. This
is a consequence of Poisson’s effect and the constraint to produce zero
macroscopic strains in the x2 and x3 directions, which leads to interfacial
separation of the fiber in x3 direction. This second rapid degradation is due
to this effect. Finally, when the two interfaces have debonded completely,
the stress response in the x2 direction corresponds to that of an RVE
containing two voids. Similar behavior is also observed for the combined
loading (L2) shown in Figure 10(b). The shear stress is seen to be affected
more prominently by the debonding of fiber in x1 direction.

The error in stress predicted by HCDM is attributed to the error in the
functional representation of �0ðWdÞ and P0

ijkl, and the assumption of
orthotropy. It is evident from the examples discussed that the material
degradation and consequently the variation of damage parameters depend
on the shape, distribution and orientation of the fibers in the RVE.
This emphasizes the need for comprehensive 3D micromechanics-based
continuum damage model for use in macroscopic analysis modules.
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Figure 8. Comparison of macroscopic stress–strain behavior obtained using HCDM and
homogenized micromechanics (HMM) for RVE with an elliptical fiber (Figure 2(b)), for load
cases (a) L1, (b) L2, and (c) L3.
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MACRO–MICRO ANALYSIS OF A COMPOSITE STRUCTURE

WITH THE HCDM MODEL

This section is intended to demonstrate the potential of HCDM model as
a design tool for composite microstructures in structural applications by
establishing a connection between macroscopic damage evolution and
explicit microscopic failure mechanisms. Macroscopic structural simulations
of damage evolution are conducted by the commercial FEM code ABAQUS
(Abaqus, 2001) with the HCDM model incorporated in the user subroutine
UMAT. Once calibrated and validated, the HCDM model for a given RVE
can be used for macroscopic analysis using the stress update procedure
explained in ‘Implementation of the HCDM Model in a Macroscopic
Analysis Module’ section. A distinct advantage of the HCDM model over
conventional macro–micro homogenization methods (Lene and Leguillon,
1982; Guedes and Kikuchi, 1991) is that the macroscopic analysis of large
structures can be conducted very efficiently while preserving the effects of
microstructural features.
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Figure 9. Comparison of macroscopic stress–strain behavior obtained using HCDM
and homogenized micromechanics (HMM) for RVE with hexagonal arrangement of fibers
(Figure 2(c)), for load cases (a) L1, (b) L2, and (c) L3.
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The simulations involve a deformable composite projectile impactor,
colliding with a rigid surface as shown in Figure 11. The impactor is
cylindrical in shape with radius of 3.2mm and length of 32.4mm and is
moving with initial velocity of 10m/s. The impactors are assumed to be
constituted of different microstructural RVEs, namely the RVEs (a), (b),
(c), and (d) described in ‘Numerical Examples for Validating the HCDM
Model’ section. The RVEs are oriented in the structure such that the
local (RVE) 3-direction coincides with the global 2-direction of Figure 11.
The macroscopic material behavior of the impactors are described by the
calibrated HCDM models developed in ‘Numerical Examples for Validating
the HCDM Model’ section. To account for the inertia effects, the
simulations are conducted with ABAQUS/Explicit with the HCDM
constitutive law incorporated in VUMAT. The density of epoxy matrix is
assumed to be 750 kg/m3 while that of steel fiber is 7800 kg/m3 so that, for
fiber volume fraction of 20%, the density of the aggregate is 2160 kg/m3.
The rigid surface and the projectile are modeled using continuum elements,
and contact between projectile and rigid surface is assumed to be frictionless.
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Figure 10. Comparison of macroscopic stress–strain behavior obtained using HCDM and
homogenized micromechanics (HMM) for RVE with two perpendicular fibers (Figure 2(d)),
for load cases (a) L1, (b) L2, and (c) L3.
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The total energy dissipated due to evolving damage (Wd) is plotted as a
function of time in Figure 12 for the different composite microstructures.
The composite impactor with RVE (a) undergoes maximum amount of
damage while that with the cross-ply RVE (d) undergoes only
nominal damage. For the composite with elliptical fiber reinforced
RVE (b), the damage initiates earlier than that for RVEs (a) and (c).
However, it accumulates at a lower rate, resulting in significantly lower
value of Wd at the end of the simulation. Figures 13(a)–(d) and 14(a)–(d)
show contour plots of energy dissipated Wd due to evolving damage at 2.2
and 5.0 ms, respectively for the different microstructures. The damage
initiates near the periphery of the impactor head and then propagates
towards the center of the head cross-section. It is observed that at
t=2.2 ms (Figure 13(a)–(d)), the maximum value of local accumulated
Wd for composite with RVE (b) is significantly less than that for composite
with RVE (a). Also, there is remarkable difference in the damage
distribution for the two cases. In the latter case, damage is concentrated
over a few elements while in the former case, it is more uniformly distributed
about the center. This behavior may be attributed to the different shapes
of the fibers. The composite impactor with RVE (c) shows lower value of
maximum Wd than the composite with RVE (a); however, the distribution
of damage is similar. At a later time t=5.0 ms (Figure 14(a)–(d)),
the maximum local Wd show a different trend. In this case, Wd is the
highest for composite with RVE (c), followed by RVE (b), and then
RVE (a). Different loading states affect the evolution of damage in each
microstructural configuration in different ways resulting in different
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Figure 11. Finite element model of a composite impactor colliding with a rigid surface.
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Figure 12. Total energy dissipated (Wd) due to evolving damage in the composite impactor
for four different microstructures.
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Figure 13. Contour plots of energy dissipated (Wd) due to evolving damage for composite
impactor with RVEs (a), (b), (c), and (d), at a time=2.2 ms.
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damaged behavior at various locations in the structure. However, the
distribution of Wd is more uniform in composite with RVE (a), and hence
the total Wd is more than for the other RVEs.

Time histories of the normal contact force at the impactor-rigid
wall interface are compared in Figure 15(a)–(d). The problems for
the four RVEs are solved with and without damage. The elastic
stiffness tensor in the latter case is equal to the homogenized RVE
stiffness with a perfect interface. The plots show that contact force
rapidly reaches a peak value, reduces and stabilizes for a while and then
gradually increases again. The later increase in contact force occurs earlier
in the cross-ply composite. Stress waves generated during impact
propagate away from the center of impactor head towards the periphery.
Also the waves propagate towards the back end of the impactor. Due
to material orthotropy, the waves propagate at different speeds in
different directions. The waves get reflected from the boundaries
and interact with each other, causing the later increase in contact
force. This occurs earlier in cross-ply composite because of higher

Wd

RVE(a)

+0.0e+00
+3.7e−06
+7.3e−06
+1.1e−05
+1.5e−05
+1.8e−05
+2.2e−05
+2.6e−05
+2.9e−05
+3.3e−05

1

2

3

Wd

RVE(b)

+0.0e+00
+3.7e−06
+7.3e−06
+1.1e−05
+1.5e−05
+1.8e−05
+2.2e−05
+2.6e−05
+2.9e−05
+3.3e−05

1

2

3

Wd

RVE(c)

+0.0e+00
+3.7e−06
+7.3e−06
+1.1e−05
+1.5e−05
+1.8e−05
+2.2e−05
+2.6e−05
+2.9e−05
+3.3e−05

1
2

3

Wd

RVE(d)

+0.0e+00
+3.7e−06
+7.3e−06
+1.1e−05
+1.5e−05
+1.8e−05
+2.2e−05
+2.6e−05
+2.9e−05
+3.3e−05

1
2

3

(a)

(c)

(b)

(d)

Figure 14. Contour plots of energy dissipated (Wd) due to evolving damage for composite
impactor with RVEs (a), (b), (c), and (d), at time=5.0 ms.
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wave speeds. For the impactors with RVEs (a), (b), and (c), the contact force
with and without damage are concurrent until damage initiation, after
which, the contact force with damage accumulation is lower. The difference
between the two curves increases as more and more damage accumulates,
indicating reduction in the load carrying capacity of the material. The
difference is negligible for the cross-ply composite owing to negligible
damage accumulation.

Finally, the homogenization method allows for the assessment of stress–
strain and damage evolution in the microstructural RVE, subject to a given
macroscopic strain history. Figure 16(a)–(d) show the stress �11 contour plots
in the microstructural RVEs at a point on the face of the impactor. At this
point, the macroscopic stress evolution predicted by HCDM model is
compared with the homogenized stress obtained from the microstructural
RVE analysis subjected to macroscopic strain history. The comparison is
demonstrated in the Figure 17(a)–(d). Excellent agreement between the
HCDM and the homogenized micro-scale distributions confirm the robust-
ness of the HCDM model.
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Figure 15. Comparison of the interfacial contact force during impact with and without
interfacial damage for composite impactors with RVEs (a), (b), (c), and (d).
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The evolution of stresses in Figure 17(a)–(c) show change from initial
negative region to positive values. After that, the stress �22 undergoes
fluctuations while �11 remains positive till the end of the simulation.
The initial negative region corresponds to the compressive stress waves
generated due to impact. As these compressive waves propagate into the
impactor, and the waves on the contact surface get reflected from the
periphery, the stresses become tensile. Because of the strong material
anisotropy, the �22 waves undergo multiple reflections, generating alternate
tensile and compressive waves going into the impactor. However, this
stress component does not contribute to damage significantly as it is along
the direction of the fibers. The �33 (not shown in the figures) remains
negative throughout the simulation and is inconsequential to the damage.
Also, the shear component �12 remains small. Therefore, the damage
accumulation at this material point is mainly affected by evolution of �11.
In case of cross-ply RVE (d) (Figure 17(d)), both �11 and �22 are along
fiber directions and �33 (not shown) is negative. Hence, only nominal
damage is accumulated in this case.
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Figure 16. Contour plots of the microscopic stress (�11) in the RVE, at a macroscopic point
on the head of the composite impactor for RVEs (a), (b), (c), and (d).
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CONCLUSIONS

An accurate and computationally efficient 3D homogenization-based
continuum damage mechanics model (HCDM) is developed in this paper for
fiber reinforced composites undergoing interfacial debonding. The HCDM
model represents orthotropic behavior in the PDCS and uses a fourth order
damage tensor which characterizes the stiffness as an internal variable. The
model is found to accurately predict damage behavior for a wide range of
proportional and nonproportional loading. The orientation of the principal
damage axes can change significantly with the evolution of damage,
depending on the load history. The effect is particularly pronounced for
nonproportional load-strain histories. This effect is accounted for by
expressing the damage evolution laws in the PDCS. Functional forms of
various damage parameters �0, P0

ijkl are developed in terms of the strain
invariants I1, J2, and J3 and damage dissipation energy Wd to express
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Figure 17. Comparison of stress evolution predicted by HCDM model and the homogenized
micromechanics (HMM) at a macroscopic point on the head of the composite impactor for
RVEs (a), (b), (c), and (d).
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variation of damage variables with the evolving damage. Parameters are
calibrated by performing micromechanical RVE analysis for a few imposed
strain histories. The functional forms of the parameters overcome the
serious limitations of constant damage parameters that are conventionally
assumed in CDM models. Numerical experiments clearly demonstrate that
constant parameter damage laws are not able to accurately predict the
damage behavior. The assumption of orthotropy of damage laws in the
PDCS is found to yield reasonably good accuracy. The model’s robustness is
evident from the good agreement between HCDM and HMM response of
different RVEs for a variety of loading paths.

The HCDM model is a very effective tool in making macroscopic damage
predictions in structures with explicit reference to the microstructural
composition. This capability is largely lacking in the literature. The
macroscopic behavior is sensitive to the shape, spatial arrangement as well
as orientation of the fibers. Therefore, different microstructural configura-
tions may be suitable at different locations in the structure depending on the
loading conditions. The HCDMmodel can hence be used in a material design
framework to enhance the mechanical properties of structures/components
by optimizing microstructural configurations and compositions.

The present model however has some limitations that are currently being
investigated by the authors. The model assumes the existence of an RVE
microscopic periodicity that yield uniform macroscopic response. As shown
in Swaminathan et al. (2006a), the RVE continuously evolves in size with the
evolution of microscopic damage. Continuous adjustments are needed for
their incorporation in damage models. Higher order size dependent damage
models with changing length scale parameters are currently being looked
into to overcome this shortcoming. A second limitation is that although the
microstructural model accounts for crack opening and closing, it is not
explicitly accounted for in the macroscopic model. Specifically, the present
work does not take into account the effect of reverse or cyclic loading.
A new HCDM model that explicitly accounts for crack closure effects
during cyclic loading is currently being developed by the authors, and will be
reported soon.

ACKNOWLEDGMENTS

This work has been supported by the Army Research Office through
grant No.DAAD19-02-1-0428 (Program Director: Dr B. Lamattina). This
sponsorship is gratefully acknowledged. Computer support by the
Ohio Supercomputer Center through grant PAS813-2 is also gratefully
acknowledged.

Homogenization-based Continuum Damage Mechanics Model 33

+ [Ver: 8.07r/W] [18.9.2008–10:15am] [1–36] [Page No. 33] REVISED PROOFS {SAGE_REV}Ijd/IJD 091563.3d (IJD) Paper: IJD 091563 Keyword



REFERENCES

Abaqus (2001). Users Manual, Hibbit, Karlsson and Sorensen, Inc., Pawtucket, USA.

Allix, O. and Hild, F. (2002). Continuum Damage Mechanics of Materials and Structures,
Elsevier, Oxford, UK.

Camacho, G.T. and Ortiz, M. (1996). Computational Modeling of Impact Damage in Brittle
Materials, Int. J. Solids Struct., 33: 2899–2938.

Carol, I., Rizzi, E. and Willam, K. (1994). A Unified Theory of Elastic Degradation and
Damage based on a Loading Surface, Int. J. Solids Struct., 31(20): 2835–2865.

Chaboche, J.L. (1981). Continuum Damage Mechanics: A Tool to Describe Phenomena before
Crack Initiation, Nuclear Engrg. Design, 64: 233–247.

Chaboche, J.L., Kruch, S. and Pottier, T. (1998). Micromechanics Versus Macromechanics: A
Combined Approach for Metal Matrix Composite Constitutive Modeling, Eur. J. Mech.
A/Solids, 17: 885–908.

Chan, L.C., Cheng, C.H., Jie, M. and Chow, C.L. (2005). Damage-based Formability Analysis
for TWBs, Int. J. Damage Mech., 14(1): 96–83.

Chandra, N., Li, H., Shet, C. and Ghonem, H. (2002). Some Issues in the Application of
Cohesive Zone Models for Metal-ceramic Interface, Int. J. Solids Struct., 39: 2827–2855.

Choi, J. and Tamma, K.K. (2001). Woven Fabric Composites – Part I: Prediction of
Homogenized Elastic Properties and Micromechanical Damage Analysis, Int. J. Numer.
Meth. Engrg., 50: 2285–2298.

Chow, C. and Wang, J. (1987). An Anisotropic Theory of Elasticity for Continuum Damage
Mechanics, Int. J. Frac., 20: 381–390.

Chow, C., Yang, X.J. and Edmund, C. (2001). Viscoplastic Constitutive Modeling of
Anisotropic Damage under Nonproportional Loading, J. Engng. Mater. Tech., 123:
403–408.

Cordebois, J. and Sidoroff, F. (1982). Anisotropic Damage in Elasticity and Plasticity, J. Mech.
Theor. Appl., 45–60.

Costanzo, F., Botd, J.G. and Allen, D.H. (1995). Micromechanics and Homogenization of
Inelastic Composite Materials with Growing Cracks, Eur. J. Mech. Phy. Solids, 44(3):
333–370.

Desmorat, R., Ragueneau, F. and Pham, H. (2007). Continuum Damage Mechanics for
Hysteresis and Fatigue of Quasi-brittle Materials and Structures, Int. J. Numer. Anal.
Meth. Geomech., 31: 307–329.

Feyel, F. and Chaboche, J.L. (2000). FE2 Multiscale Approach for Modelling the
Elastoviscoplastic behaviour of Long Fibre SiC/Ti Composite Materials, Comput.
Meth. Appl. Mech. Engrg., 183: 309–330.

Fish, J., Yu, Q. and Shek, K. (1999). Computational Damage Mechanics for Composite
Materials based on Mathematical Homogenization, Int. J. Numer. Meth. Engrg., 45:
1657–1679.

Ghosh, S., Bai, J. and Raghavan, P. (2007). Concurrent Multi-level Model for Damage
Evolution in Microstructurally Debonding Composites, Mech. Mater., 39(3): 241–266.

Ghosh, S., Lee, K. and Raghavan, P. (2001). A Multi-level Computational Model for Multi-
scale Damage Analysis in Composite and Porous Materials, Int. Jour. Solids Struct.,
38(14): 2335–2385.

Ghosh, S., Ling, Y., Bhaskar, M. and Ran, K. (2000). Interfacial Debonding Analysis in
Multiple Fiber Reinforced Composites, Mech. Mater., 32: 561–591.

34 J.R. JAIN AND S. GHOSH

+ [Ver: 8.07r/W] [18.9.2008–10:15am] [1–36] [Page No. 34] REVISED PROOFS {SAGE_REV}Ijd/IJD 091563.3d (IJD) Paper: IJD 091563 Keyword



Guedes, J.M. and Kikuchi, N. (1991). Preprocessing and Post Processing for Materials based
on the Homogenization Method with Adaptive Finite Element Methods, Comp. Meth.
Appl. Mech. Engng., 83: 143–198.

Hill, R. (1948). A Theory of the Yielding and Plastic Flow of Anisotropic Metals, Proceedings
of Royal Society of London, A193: 281–297.

Ju, J.W., Ko, Y.F. and Ruan, H.N. (2006). Effective Elastoplastic Damage Mechanics for
Fiber-reinforced Composites with Evolutionary Complete Fiber Debonding, Int. J.
Damage Mech., 15(3): 237–265.

Kachanov, L.M. (1987). Introduction to Continuum Damage Mechanics, Dordrecht, Boston,
M. Nijhoff, Boston.

Kouznetsova, V., Brekelmans, W.A.M. and Baaijens, F.P.T. (2001). An Approach to Micro-
macro Modeling of Heterogeneous Materials, Computational Mech., 27: 37–48.

Krajicinovic, D. (1996). Damage Mechanics, Elsevier, Amsterdam, Netherlands.

Ladeveze, P. (2002). An Anisotropic Damage Theory with Unilateral Effects: Applications to
Laminates and to Three- and Four-dimensional Composites, In: Allix, O. and Hild, F.
(eds), Continuum Damage Mechanics of Materials and Structures, Elsevier, Oxford, UK,
Vol. 1, pp. 205–233.

Lemaitre, J. and Chaboche, J.L. (1990). Mechanics of Solids, Cambridge University Press,
Cambridge, UK.

Lene, F. and Leguillon, D. (1982). Homogenized Constitutive Law for a Partially Cohesive
Composite Material, Int. J. Solids Struct., 18(5): 443–458.

Li, S. and Ghosh, S. (2004). Debonding in Composite Microstructures with Morphologic
Variations, International Journal of Computational Methods, 1(1): 21–149.

Massart, T.J., Peerlings, R.H.J. and Geers, M.G.D. (2007). Structural Damage Analysis of
Masonary Walls using Computational Homogenization, Int. J. Damage Mech., 16(2):
199–226.

Matzenmiller, A., Lubliner, J. and Taylor, R.L. (1995). A Constitutive Model for Anisotropic
Damage in Fiber-composites, Mech. Mater., 20: 125–152.

Murakami, S. (1988). Mechanical Modeling of Material Damage, J. Appl. Mech., 55: 280–286.

Needleman, A. (1990). An Analysis of Decohesion Along an Imperfect Interface, Int. J.
Fracture, 42: 21–40.

Needleman, A. (1992). Micromechanical Modeling of Interfacial Decohesion, Ultramicroscopy,
40: 203–214.

Nemat-Nasser, S. and Hori, M. (1999). Micromechanics : Overall Properties of Heterogeneous
Materials, North-Holland, Elsevier, Amsterdam, Netherlands.

Ortiz, M. (1985). A Constitutive Theory for the Inelastic behavior of Concrete, Mech. Mater.,
4: 67–93.

Ortiz, M. and Pandol, A. (1999). Finite-deformation Irreversible Cohesive Element for Three-
dimensional Crack-propagation Analysis, Int. Jour. Numer. Meth. Engng., 44: 1267–1282.

Pellegrino, C. Galvanetto, U. and Schrefler, B.A. (1999). Numerical Homogenization of
Periodic Composite Materials with Non-linear Material Components, Int. J. Numer.
Meth. Engrg., 46: 1609–1637.

Raghavan, P. and Ghosh, S. (2004). Concurrent Multi-scale Analysis of Elastic Composites by
a Multi-level Computational Model, Comput. Meth. Appl. Mech. Engng., 193(6–8):
497–538.

Raghavan, P. and Ghosh, S. (2005). A Continuum Damage Mechanics Model for
Unidirectional Composites Undergoing Interfacial Debonding, Mech. Mater., 37(9):
955–979.

Homogenization-based Continuum Damage Mechanics Model 35

+ [Ver: 8.07r/W] [18.9.2008–10:15am] [1–36] [Page No. 35] REVISED PROOFS {SAGE_REV}Ijd/IJD 091563.3d (IJD) Paper: IJD 091563 Keyword



Segurado, J. and Llorca, J. (2002). A Numerical Approximation to the Elastic Properties of
Sphere-reinforced Composites, J. Mech. Phy. Solids, 50: 2107–2121.

Sharma, P., Dasgupta, A. and Cuddalorepatta, G. (2005). The Connection between
Microstructural Damage Modeling and Continuum Damage Modeling for Eutectic
SnPb Solder Alloys, Int. J. Damage Mech., 14(4): 343–363.

Simo, J.C. and Ju, J.W. (1987). Strain and Stress-based Continuum Damage Models, Part I:
Formulation, Int. J. Solids Struct., 23(7): 821–840.

Swaminathan, S., Ghosh, S. and Pagano, N. J. (2006a). Statistically Equivalent Representative
Volume Elements for Composite Microstructures, Part I: Without Damage, J. of Comp.
Mater., 40(7): 583–604.

Swaminathan, S., Pagano, N.J. and Ghosh, S. (2006b). Analysis of Interfacial Debonding in
Three-dimensional Composite Microstructures, J. Engng. Mater. Tech., 128: 96–106.

Voyiadjis, G.Z. and Kattan, P.I. (1992). A Plasticity-damage Theory for Large Deformation of
Solids. Part I: Theoretical Formulation, Int. J. Engrg. Sci., 30(9): 1089–1108.

Voyiadjis, G.Z. and Kattan, P.I. (1996). On the Symmetrization of the Effective Stress Tensor
in Continuum Damage Mechanics, J. Mech. Beha. Mater., 7(2): 139–165.

Voyiadjis, G.Z. and Kattan, P.I. (2006). Advances in Damage Mechanics: Metals and Metal
Matrix Composites with an Introduction to Fabric Tensors, Elsevier, Oxford, UK.

Voyiadjis, G.Z., Kattan, P.I. and Taqieddin, Z.N. (2007). Continuum Approach to Damage
Mechanics of Composite Materials with Fabric Tensors, Int. J. Damage Mech., 16(3):
301–330.

Wriggers, P., Zavarise, G. and Zohdi, T.I. (1998). A Computational Study of Interfacial
Debonding Damage in Fibrous Composite Materials, Compu. Mater. Sci., 12: 39–56.

+ [Ver: 8.07r/W] [18.9.2008–10:15am] [1–36] [Page No. 36] REVISED PROOFS {SAGE_REV}Ijd/IJD 091563.3d (IJD) Paper: IJD 091563 Keyword

36 J.R. JAIN AND S. GHOSH


