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Abstract

This paper develops a robust CAD-based methodology for simulating 3D microstructures of polycrystalline metals using crystallographic
input data on sections created by a focused ion beam (FIB)-scanning electron microscopy (SEM) system. The method is able to construct
consistent polycrystalline microstructures with control on the resolution necessary for meaningful computational analysis in microstructure-
property estimation. The microstructure simulation methodology is based on a hierarchical geometrical representation using primitives used
in CAD modeling. It involves steps of data cleanup, interface point identification, polynomial and NURBS function-based parametric surface
segments construction, generalized cell decomposition, geometric defeaturing, and gap and overlap removal. The implementation of the entire
procedure described above is performed with the aid of user-programming facilities of a commercial CAD package Unigraphics NX3. The
microstructure simulation algorithm is validated using various error criteria and measures for an extracted microstructure of a nickel superalloy.

© 2007 Elsevier Ltd. All rights reserved.
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1. Introduction

Advanced metallic materials used in many industrial appli-
cations have complex multi-colony, multi-phase polycrystalline
aggregates in their microstructure as shown in Fig. 1. The me-
chanical behavior and fatigue failure response are intricately
governed by microstructural features that include morpholog-
ical and crystallographic characteristics, e.g. shape, size and lo-
cation of phases in the colony structure, relative colony size
and locations, crystal orientations and misorientations, grain
boundary geometry etc. Detailed micromechanical computa-
tional models are being used to understand deformation and
damage mechanisms and throw light on the stochastic nature
of failure and fatigue phenomena of these materials [1-10].
While, the computational models of polycrystalline materials
implementing crystal plasticity models are making great strides
in predicting the stress—strain behavior with reasonable ac-
curacy, ductility and fatigue failure predictions with high
fidelity are still far from mature. Morphological and crystal-
lographic heterogeneities in the microstructures result in strong
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anisotropy and localized non-homogeneous deformation, which
impose severe challenges to these computational models. Ex-
perimental studies [11] suggest that the growth of crystallo-
graphic microslip bands along active slip systems of plastic
flow causes localized instability due to compatibility require-
ments between interacting grains. They continue to grow across
grain boundaries due to grain structure instability and eventu-
ally manifest as macroscopic shear bands. The interaction of
microscopic shear bands with transverse grain boundaries also
leads to grain boundary microcracking, which grows in size and
merge to cause fracture.

It is important for computational models to capture the 3D
geometric and crystallographic details of grain morphology, as
well as their distribution in the polycrystalline aggregate for
robust prediction of their properties. An automated approach
of characterizing 3D microstructure using a dual beam focused
ion beam (FIB)-SEM system has been recently developed [26]
to acquire 3D orientation data of a succession of sections in the
material microstructure. Using a FIB column in the microscope,
highly localized micromachining and ion imaging is conducted.
Following this, high resolution electron back-scatter diffraction
(EBSD) images are acquired by a SEM column for grain
orientations. These experimental advancements have made
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Fig. 1. (a) Optical micrograph «/8 forged Ti-6242 alloy; (b) an orientation imaging microscopy image of the alloy showing a fatigue crack.

it possible to seamlessly reconstruct high fidelity 3D grain
and subgrain microstructures of polycrystalline materials. The
high fidelity 3D microregions can then be discretized and
analyzed by computational methods like the finite element
analysis methods for an accurate and reliable prediction of
material properties. This paper develops a CAD-based method
of creating 3D grain structures through post-processing of
the FIB-SEM generated OIM data. A seamless reconstruction
process will have certain characteristics and features that are
summarized below.

e Input/output data: The input to the process is crystallo-
graphic orientation data of a metallic specimen in a 3D
square grid. The output is a collection of solid bodies, with
each body representing an individual grain. A requirement is
that there be no overlap or gaps between them.

e Data uncertainty: Uncertainty corresponding to un-indexed
points, incorrectly indexed points, misalignment, scatter
marks etc. are to be expected in the experimentally acquired
data, and has to be effectively dealt with.

e Process automation: The entire process from reading of the
experimentally generated orientation maps to the creation of
grain geometries in the aggregate should be automated, such
that no, or minimum, additional user input is required.

e Robustness: The grain ensemble reconstruction procedure
should be adequately robust to deal with different material
microstructures, for which the sectional data is available.
This requires identification of unstable operations and their
removal.

e Requirements for finite element mesh: Typically crystal
plasticity simulations of polycrystalline microstructures
require prohibitively high computations, especially for
models that represent microstructural details. It is therefore
desirable to generate the microstructural details, keeping in
mind both accuracy and efficiency considerations. Optimal
representation with respect to the number of nodes and
elements in the finite element mesh should be generated
to retain both accuracy and efficiency of the eventual
computational analysis.

This paper addresses the development of a seamless method-
ology for simulating polycrystalline metal microstructures from
FIB-SEM generated serial sections using primitives used in
CAD methods. A unique strength of this method is that it is
entirely possible to monitor and control the resolution of the

simulated microstructure for accuracy and efficiency needed for
materials modeling. A commercial CAD package Unigraphics
NX3 [31] (henceforth referred to as NX3) is used to perform all
operations in the polycrystalline microstructure reconstruction.
NX3 allows direct access to most of its geometric modeling and
manipulation facilities through Open C API interface. A special
module has been developed through this interface to reconstruct
microstructure without any user intervention. Section 2 reviews
some of the related work in this general area. Section 3.1 dis-
cusses steps for data collection and cleanup procedures, while
Sections 3.2-3.4 describes the reconstruction process. Finally
validation of this method with respect to microstructural char-
acteristics is discussed in Section 4.

2. Brief review of microstructure reconstruction methods

Since polycrystalline deformation is predominantly 3D in
nature, it is essential that the microstructural models be
developed with detailed 3D information. Techniques based
on ultrasonics or its variants, such as acoustic microscopy
or laser ultrasonics [12,13] rely on good reflection proper-
ties and have limited application in metals. While X-ray-
based computed tomography [14,15] methods are widely
used in 3D solid model generation, they are generally
deficient in achieving the resolution desired for the de-
tailed study of polycrystalline metals. Synchrotron-based CT
technology have been developed to yield tomographic im-
ages with considerably high resolution [16]. However, this
method is still not commercially available and in gener-
ally is quite expensive. A few notable recent developments
in microstructure representation are showing considerable
promise. Of these, models that involve statistical extrapolations
from 2D surface or section images [17], and the morpholog-
ically ‘precise’ models of 3D reconstruction from FIB-SEM
generated serial-section data [18] are gaining considerable at-
tention. The former approach [17] has the advantage of not rely-
ing on exhaustive (often destructive) experiments to obtain the
crystallographic information. However, the reliability of these
methods in reproducing important microstructural characteris-
tics depends on the accuracy of the statistical interpolators and
methods. This is a non-trivial task and can sometimes cause
large errors if sufficient constraints are not developed in the sta-
tistical interpolation space. Reconstruction methods from 3D
sections [18], on the other hand can be experimentally chal-
lenging and are generally destructive in nature.
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3D microstructures are conventionally represented in two
ways, viz. (i) as a collection of voxels (fusion of the
words volumetric and pixel), each containing the local
orientation data, and (ii) as ensembles of grains, in which
the grain features (e.g. surfaces, edges) are constructed in
terms of parametric functions. Lewis and Geltmacher [19]
have developed the voxel-based approach, where a typical
microstructure containing 138 stainless steel grains are
discretized into 3.5 million voxels. To avoid prohibitive
computational costs incurred due to the large number of voxel
elements in a finite element mesh, they combined four voxels in
each direction to construct their finite element model. Important
geometric information can be lost in this process if the voxel
collapsing is not done in relation to the local grain boundary
geometry. Various methods of parametric reconstruction have
been proposed in the literature. The marching cube method [20]
constructs triangular models of constant density in 3D by linear
interpolation of density values in the image. Methods developed
in [21,22] use Voronoi diagrams and for reconstruction based
on unstructured sample points on a smooth surface. Other
techniques have been developed in medical imaging [23—
25] using serial-sectioned images to construct 3D images by
Delaunay triangulation.

A hierarchical parametric representation of grain vertices,
edges and surfaces is proposed in the present work to construct
the 3D volumetric domains of polycrystalline microstructures.
The method can have significant advantages over the voxel-
based reconstruction methods by adaptively controlling the
required resolution. Each grain is modeled as a solid bounded
by large arbitrarily-shaped surface patches. These surface
patches can capture the smoothness of actual grain boundary
interfaces well, while still allowing mesh of almost any size.
The resulting finite element model can enjoy accuracy with
optimal computational efficiency.

3. Reconstructing the 3D polycrystalline microstructures

Fig. 2 is a flowchart of the sequence of operations
that are necessary to construct the 3D microstructure from
experimentally acquired section data. Each of the steps is
discussed in this section.

3.1. FIB-SEM data acquisition and pre-processing

The basic steps involved in data pre-processing include
collection of data from experiments, segmentation of individual
grains, data cleanup and alignment. Only after performing all
of these steps, the data will be usable enough for any form of
geometric reconstruction.

3.1.1. Data acquisition

The sequence of operation involved in 3D data acquisition
by the dual beam focused ion beam-scanning electron
microscope (FIB-SEM) system is described in detail in
Groeber et al. [26]. As shown in Fig. 3, the experiment
entails moving a metallic specimen repeatedly between the two
microscopic stage positions, viz. the “sectioning” position and

FIB-SEM
Serial-sectioning
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Fig. 2. A flow chart showing the steps for the reconstruction of 3D
polycrystalline microstructure from FIB-SEM generated serial-sectioned data.

the “electron back scatter diffraction (EBSD)” position. Image
recognition techniques are used for automated alignment of the
sample. When the sample is in the “sectioning” position, the
FIB is used to mill a cross-section surface. After sectioning,
the sample stage is rotated and translated to bring the cross-
section face into the EBSD analysis position. In this position,
crystallographic orientation measurements are made at points
on a square grid in each section. Fig. 4(a) shows a series
of orientation maps that are stacked together to form a 3D
rendering of the crystallographic orientation in Fig. 4(b). In
this rendering, each voxel is constructed by 3D extrusion of
each pixel on the 2D orientation maps through the sectioning
thickness of the FIB process.

3.1.2. Grain segmentation

This 3D orientation data set can be used to perform
segmentation of the individual grains in the microstructure. At
each point of the microstructure, the data provides information
on the set of Euler angles (¢, @, ¢;) that define the
crystallographic orientations. In [27,28] the significance of
Euler angles is described in terms of the angular rotations of the
global coordinate system to obtain the local coordinate system
of the crystalline lattice. The latter can be obtained by rotating
the global coordinate system first by a rotation by ¢; about
z-axis, then @ about x-axis and ¢, about z-axis again. The
misorientation between two neighboring voxel points A and B
can be calculated from their respective orientations as [27,28]:

| r@agg'o -1
2

6 = min |cos™ (1
where g4 and gp are the orientation matrices of voxels A and
B respectively, expressed as in Box 1.

Several identical rotation operations (24 for cubic systems,
12 for hexagonal close packed systems) result when symmetry
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Fig. 3. Schematic of the FIB-SEM-based serial-sectioning process: (a) sectioning position (b) EBSD position.

b

Fig. 4. (a) Stacking of individual 2D orientation maps to obtain the reconstructed 3D maps; and (b) 3D volume rendering from the 2D images.

COS @1 COS o — Sin g1 sin ¢o cos P sin @1 cos @2 + cos @1 singy cos @ sin g, sin @
g = | —cosg;singy —singjcosgycos @ —singg singy + cos @ cos acos P cos g sin P where, (i = A, B)
sin ¢1 sin @ —cos g sin @ cos ¢
Box L.

of crystal lattices is taken into account through the crystal
symmetry operator O. The misorientation angle between A
and B is taken to be the minimum 6 in Eq. (1). A preset
misorientation tolerance (~4° in this study), is used to delineate
a grain boundary between two points belonging to different
grains. The steps in the segmentation algorithm are given
below:

1. Mark all points in the microstructure as unassigned. Tag a

grain number, currently under consideration as Ncyrrent = 1

. Select an unassigned point P, that has the highest reliability
of EBSD measurement rp rmax- Reliability of the
EBSD measurement is a scalar value obtained during
the experiment corresponding to the noise in the EBSD
patterns. Higher lattice distortion, common near the grain
boundaries, results in more noise and worse reliability. Using
the reliability in identifying the starting point for grain
assignment can reduce noise in grain identification.

. If rmax < Ttolerance then exit, otherwise assign Neyrrent to P.

. For each unassigned neighbor of P, find out if its
misorientation with P is within the preset tolerance. If this
is met, then assign it a grain number Ncyrrent-

. Continue with 4 recursively till no new points can be found.

W

6. Set Ncurrent = Neurrent + 1 and go to 1 till all points have
been assigned.

Some grains may contain extremely narrow ‘twin’ regions
with a special misorientation relationship with respect to the
parent grain. Due to poor data resolution of the experiment,
their thickness is not usually well sampled, making their
reconstruction extremely difficult. Due to this reason, all of the
twins are merged with their parent grain at this stage.

3.1.3. Section data cleanup

In Section 3.1.2, all the contiguous points having similar
orientations are identified as belonging to a single grain.
However, limitations of the experimental procedure may
leave some of the points un-indexed or with unreliable
orientation information. This is commonly observed for points
that are close to the grain boundaries. The lattice structure
at these points may be distorted enough to render the
readings unreliable or unusable. Presence of inclusions may
sometimes also generate this noise in the data. The data
cleanup procedure heuristically involves assigning these points
to the appropriate reliable grains. Different procedures are
implemented corresponding to the noise.
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Fig. 5. Slice of data (a) as received from the experiment; and (b) after data cleanup where unreliable and un-indexed data, in the form of speckles have been removed.
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Fig. 6. Schematic of grain orientation measures in sequence of sectioned surfaces showing (a) aligned data and (b) misaligned data along the kth section. Values of

¥ (k) are larger for misaligned sections.

e Unassigned indexed points: Points which have orientation
information but are unassigned to any grain are assigned
to that neighboring grain with which they have least
misorientation.

e Un-indexed points: Points which do not have any orientation
information are assigned to a grain with which they share the
most surface area.

e Enclosed grains: Grains with sizes less then a given
tolerance (64 data points in this paper corresponding to a
1 um?) or grains that are contained completely inside any
other grain are usually inclusions and therefore are merged.

The data cleanup procedure, when applied to the experimen-
tal data of Fig. 5(a) results in the clean image of Fig. 5(b). Noisy
points, usually observed as speckles are completely absent in
the later image.

3.1.4. Section alignment

Serial-sectioning involves the rotation of the stage between
the scanning and cutting positions as shown in Fig. 3. Although
the alignment errors are kept in check through the use of optical
recognition technologies, some alignment errors may still be
present in the resulting data. These errors can be minimized
by moving the misaligned slices of data in x- and y-directions,
orthogonal to the sectioning direction, by appropriate distances.
Since the section data is in the form of a 3D square grid, these
corrections must correspond to the multiples of step-size or
sectioning thickness (AL) of the experiments. Schematics of
aligned and misaligned sections corresponding to individual
grains are shown in Fig. 6. The misalignment of a pixel in a
given direction of the sectioned plane causes the grain boundary

to appear jagged. A measure of this jaggedness can be defined
as:

1 if GG, j, k) # GG, j,k—1)
and G(, j, k) #G(@, j,k+ 1) 2)
0 otherwise

Vi, j, k) =

Here, G(i, j, k) corresponds to the grain number at the
(i, j, k)th data point corresponding to the x, y and z-directions
respectively. The measure of jaggedness for the section (k) is
given as:

Ymax Xmax

Uk =) Y WG, jh), 3)

=0 i=0

where, xmax and ymax are the total number of data points
in the corresponding directions. The measure of the section
jaggedness parameter ¥ (k) is high for a misaligned section (see
Fig. 6). Grain boundary energetics makes it difficult to observe
a ‘bump’ on most of the grains along a particular direction on a
given section. This observation is the basis of the algorithm to
perform automatic alignment of the 3D serial-sectioned data. In
this process, the following steps are performed for each section
k =310 Zmax — 2.

1. Calculate ¥ (k), ¥(k — 1), ¥(k + 1) using Eq. (3).

2. Set AWXt = 0and n =1, where A ¥XT is the maximum
value of (¥ (k) — ¥*™(k)) and n corresponds to voxel data
points.

3. Offset the slice k by n data points in the positive x-direction
and calculate ¥V (k), ¥t (k — 1), ¥ (k 4+ 1). Here
U*F (k) is the jaggedness measure of section k, when it is
displaced by n voxels in the positive x-direction.
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Fig. 7. A pixel-based representation of microstructure: (a) before alignment with bumps on all grains along the misaligned section; and (b) after alignment with
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Fig. 8. Additional validity checks introduced for reconstructed grains: (a) vertex-consistent geometry; (b) vertex-inconsistent geometry; (c) edge-consistent

geometry and (d) and edge-inconsistent geometry.

4. Reset the section k to original position. If ¥* (k) < W (k),
UG — 1) < Uk =1, Pk +1) < Pk +1)
and W(")_W—(ka;n(k) > preset tolerance then proceed to step
5, otherwise skip to step 6.

5.1 AWXE > (W(k) — U (k)), then n — 1 is the positive
x-offset required for the section k and proceed to step 7.
Otherwise set AW = ((k) — (), n = n+ 1
and go to step 3.

6. Repeat steps 2-5 in the negative x-direction.

7. Repeat steps 2—6 for the positive and negative y-direction.

The main idea behind the alignment algorithm is that a
misaligned section, when moved in the direction opposite to
the misalignment, will reduce ¥ (k) for section itself, as well as
for sections above and beneath it. With this alignment criterion,
the algorithm generates a list of distances along the x- and y-
directions, by which each section must be offset. Fig. 7 shows

the result of this algorithm on actual data, which is physically
offset to show the improvement in alignment. To account for
the missing data during this physical offset, the new data cube
after alignment has to be cropped down by the amount offset.
Also, to prevent a few local natural bumps to be replaced by
artificial bumps due to alignment, the preset tolerance in step 4
is set to 10%. One of the shortcomings of this algorithm is that
the minimum distance by which each section can be moved is
limited to A L. Hence the alignment errors below this limit may
not be completely corrected.

3.1.5. Preprocessing applied to a polycrystalline microstruc-
ture

To demonstrate the validity of the pre-processing algorithm,
it is tested on a specimen of a fine-grained polycrystalline
nickel-base superalloy, IN100. After alignment, the dimension
of the data cube obtained is 6.25 um x 41.25 pm x 25.0 um in
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the x-, y- and z-directions with step-size AL = 0.25 um in each
direction, corresponding to a total of 412 500 data points. After
segmentation and cleanup a total of 196 grains are identified
for this data. Alignment is limited to move the data sections
in integral multiples of the step-size AL. Even, the process of
collection of data itself is limited to the step-size AL. Since,
these processes involve an error of the order of AL, this paper
will frequently use AL as one of the reference length scale for
reporting errors.

3.2. Domain construction for individual grains

At the start of this reconstruction process, each grain
in the microstructure is represented as a set of contiguous
voxels in 3D raster. Metallographic observations show that
while it is common to have grain interfaces with significant
undulations and sharp curvatures when multiple grains are
involved, the interface shared by two grains can be smooth.
Consistent with this observation, smooth interface patches are
first generated by the interpolation of interface points shared
by each pair of grains. Two types of interpolation functions,
viz parametric polynomial functions or Non-Uniform Rational
B-Spline or NURBS functions are used [29,30]. Following
surface reconstruction, the volumetric domain of each grain is
constructed by a cell-decomposition process. Compatibility and
defeaturing of these grains will then be discussed.

3.2.1. Valid geometric entities in the reconstruction

Before discussing the steps of grain surface and volume
generation, it is important to delineate valid geometric
operations that yield topologically consistent geometric
constructs. Examples of invalid operations include exceptional
cases that may arise due to ill-conditioned equations, instability
of the geometric kernel etc. To avoid such inconsistencies,
checks available in NX3 are activated for the following.

1. Data structure problems, such as corruption

2. Face—face intersections, to see if all the faces of a solid meet
at their edges only

3. Consistency, to see if (i) the topological structure is
consistent, (ii) the geometrical objects are valid and that
faces and edges have G1 continuity, and (iii) the geometrical
objects are consistent, i.e., point geometry lies on the edges
that it is linked to, edges on the faces and so forth.

4. Smoothness of the B-surface of each face along the patch
boundaries

5. Self-intersection of each face of the solid

. Spike or cuts on each face of the solid

7. End-point consistency, such that the solid has edges meeting
at a single point as shown in Fig. 8(a), An end-point
inconsistent solid, shown in Fig. 8(b), will have at least one
pair of edges that do not meet a common point.

8. Edge consistency, such that each face-edge is shared
between exactly two faces as shown in Fig. 8(c). If at least
one face-edge exists that belongs to only one face as seen in
Fig. 8(d), then it is an edge-inconsistent solid.

=)}

Fig. 9. Interface points identified as black dots between two adjacent grains 1
(dark grey voxels) and 2 (light grey voxels), and an interpolated surface (in this
case a straight line) that is fit to these points.

The last two checks are unavailable in NX3 and are
additionally introduced to further improve the robustness of the
geometric operations. If the result of any modeling operation
generates a solid that violates any of these checks, then the
operation is considered as invalid. In these special cases,
alternative methods of performing the same operation may have
to be developed. For example, if subtraction of solid B from
solid A fails, then B is adaptively broken into smaller pieces,
each of which is then subtracted from A.

3.2.2. Surface reconstruction using parametric interpolation

Fig. 9 depicts surface points (s) that are identified as
belonging to a pair of grains. The grain-pair interfaces can be
represented by different types of parametric surfaces including
ruled surfaces, parametric polynomial surfaces or NURBS
surfaces, fit through these surface points. The only constraint
on these surface patches is that they have to be smooth, accurate
and extendable. Due to the amenability of their representation
in a standard CAD/FEA environment, parametric polynomial
and NURBS surface-fitting are chosen, and the better fit among
them is selected for representing a grain surface.

3.2.2.1. Parametric polynomial surface-fitting. A parametric
polynomial surface patch of order n is defined as a polynomial
expression for physical coordinates (x, y, z) of a point on the
surface in terms of parametric coordinates (1, w). i.e.,

x = x(u, w) = xp0 + Xo1% + xjow
+xpuw + -+ xpu"w"

y = y(u, w) = yoo + yoiut + yiow

+yruw + -+ ypu"w" @
z = z(u, w) = zo0 + zo1u + z10w
+ziuw + -+ Zgpuw" Yu, w € [0, 1]
or in a more compact form,
n o n
O, wy =Y > Qyu'w/ (5)

i=0 j=0
- x - Xjj
where, 0 = |yt and Q;; = {vj(. A least square fit
z Zij
of the resulting surface, obtained for a set of N points,
S = ({51,5,...,5n} with parametric coordinates U =
{(ur,wy), ..., (uny,wn)} can be derived by minimizing a
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residual R, defined for each point (x4, y4, z4) as:

non N\ 2
2 i J
R; = xd—Zinjxuiixwd

i=0 j=0

n_n ) . 2
4+ <yd—ZZy,‘j xu’dxw[j,)

i=0 j=0

2
<Zd—ZZz,]><udxwd> . (6)

=0 j

The square of residual error can be minimized by setting

N (R} .
% = 2’:1 . = 0 with respect to each of the

unknown variables x;x, resulting in

> (s sot) = 32 (33 )

d=1 a=1 \ \i=0 j=0
x (uéwﬁ)) . %)

Eq. (7) can be represented in a matrix form as

ATAX = ATS, or X = (ATA)'ATS, (®)
where A is a rectangular matrix containing exponents of the
parametric coordinates (ug, wg), Sx is a vector of known
coordinates (x4, Y4, Z4), and X is the solution vector of the
unknown coefficients in Eq. (4). The parametric coordinates
(ug, wy) for each point [xg4, g, z4]¥ in Eq. (7) are not known
in advance and hence an iterative scheme is implemented
for their determination. The Newton—Raphson has been used
to minimize the residual in Eq. (9) by varying U =
{i,wi), (w2, w2) ..., (un, wy)lh ie.

n n . . 2
Minimize Xq — Z Z xiju'w’

i=0 j=0

oS w)

i=0 j=0

2
(Za’_ZZZUu U)]) . (9)

=0 j=0

An initial guess of the parametric coordinates (ug4, wg)
is needed to start this adaptive fitting. The projection of
(x4, ya, z4]T onto the best-fit plane P of the N points is taken as
an initial guess in this iterative method, for which the sequence
of steps is given below:

1. Fit a plane ax + by + cz = 1 over the set of data points
S={s1,52,....57}

2. Project the data points onto the plane by calculating for all
data points

PO _ (b% + Hxqg —abyy — aczy +a

¢ a? + b? + 2 ’
. 2, 2Ny B
ysrq _ (a” 4+ c?)yq — abxg — bczg + b (10)
a’? +b% +¢?
Zproj _ (b* + a*)zyg — cbyy — acxy + ¢
¢ a’? +b>+¢? ’

3. Translate the plane so that it passes through origin and its
new equation takes the form axmms + by 4 ¢z =0

trans __ _.Proj trans __
with x ;% =x,; 7, y; —yd andz

4. Rotate this plane such that the z- coordmate becomes Zero.
ie.,

trans _ PrOJ —1 / c.

X Xt d 0 ¢
y‘l'iot — y:[Ot — O 1 0
o 0 —cy 0 d
1 O 0 x(tjrans
x |0 c;/d cy/d || y5 . (11)
0 —cy/d c;/d thrans
Here ¢, = —% ¢, = —2 ¢ =
* Va2 2y’ Nl
P I ) 2
N a?++b24c? d= Cy * i

5. Scale the coordinates, so that the maximum parametric
coordinate of a point is 1 and minimum is 0. i.e.,

Xd — Xmin Yd — Ymin

Ug = ———, Wy = —"—"— (12)
Xmax — Xmin Ymax — Ymin

where xpin = min{xy, ..., XN}, Xmax = max{xg, ..., xy}

and ymin = min{y1, ..., YN}, Ymax = max{yi, ..., yn}.

The overall adaptive algorithm to fit a surface over a set of
surface points may be summarized in the following steps.

1. Use the least square scheme to fit a plane P, over the given
set of data points S {sl, $2,...,5N}

2. Project the points in S onto P to obtain the initial guess of
parameters U = {(u1, wy), (uz, wa), ..., (uny, wy)}. Since
a complete polynomial is used, the choice of the orthogonal
directions shall only affect the coefficients of Ql- j» and not
the surface itself.

3. Set n = 1. Use the parameters U and data points S, to obtain
the polynomial coefficients Q; j in Eq. (5)

4. Calculate average error Eijnitial for all the surface points. The
absolute normal error is the smallest distance of a point
along the normal to the surface. The absolute error ¢4 and
the average normal error E are evaluated as

N(u, w)
&4 = :mln(|k|) Dy = O(u, w) +kﬁ} (13a)

N

> &d

E=d:l
N

Here, N(u, w) is the normal to the surface at parametric
coordinates (u, w) and is calculated as cross product of two

(13b)
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Fig. 10. (a) A representative third-order polynomial surface with a least square fit to a set of data points delineating a grain boundary, (b) point-wise 3D histogram
of the point-wise error &4, and (c) convergence of average normalized error (ENormalizedy with different order interpolation functions.

tangents at that point on the polynomial surface as:
N, w) = T, (u, w) x Ty (u, w) (14)
where, T, (u, uL: Z?zl Yoo iQiju~'w/ and T,y (u, w) =
Yoio 2 i1 J Qiju'w/ T

5. Use Newton—Raphson iterative method for better estimates
of U at each point

6. Calculate average error Efpy for this fit. If | Eipitial — Efinall <
tolerance then proceed, otherwise go to step 3.

n 4+ 1 and go to step 3,

7. If Efnal > tolerance then n
otherwise exit.

The program starts with the first-order polynomial and
adaptively increases the order till there is convergence with
respect to the average normal error of Eq. (13b). Fig. 10 is a
demonstration of the effectiveness of this algorithm, where a
third-order polynomial surface is adaptively fit to a scattering
data points. Each of these data points are then projected onto the
surface and the normal distance is calculated. The 3D bar chart
is shown in Fig. 10(b), in which each bar corresponds to the
projected distance of each point to the surface of the non-planar
parametric surface. Thus the height of each bar is equal to
the absolute normal error. For comparison, the step-size in the
serial-sectioning experiment from which the data is generated,

is also shown. The convergence of this error for different order
polynomials is shown in Fig. 10(c). The normalized averaged
normal error, with the step-size AL as the normalizing factor is
defined as:

N

> AT
[normalized _ d=1 (15)

N

3.2.2.2. Non-uniform rational B-spline or NURBS surface-
fitting. Non-uniform rational B-spline surfaces or NURBS are
the second type of parametric surface that are fit to the set of
data points corresponding to the grain boundaries. The NURBS
expression for physical coordinates (x, y, z) of a point on the
surface in terms of parametric coordinates (u, w) is given as

n+1m+1

O, w) =YY Bl Ni k()M 1(w)

i=1 j=I

(16)

where the coefficients Bl.’f j correspond to the vertices of a 4D
polytope, (k, [) are the order of the surface spline functions and
(n+1) and (m + 1) are the number of points in each parametric
direction. N; x,M;; are NURBS basis functions defined by the
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Cox—deBoor recursion formulae as

Ni1(u) = {(1) if xjfuijﬂ}’ and

otherwise

(u — x;)Nj x—1(u) n X4k — WNi11,6—1 W)

Xitk—1 — Xi

Nii(u) =

a7
Xitk — Xi+1

where, [X] = [x1,x2,..., Xp4k+1] is called the knot-vector
with x; < xj4+1, and u € [x1, Xy4+k+1]- The NURBS routine
in NX3 [31] to fit a NURBS surface for a point cloud is used to
obtain a “smooth” surface for the set of grain boundary points.
The same iterative technique mentioned in Section 3.2.2.1 is
implemented for least square fit of the NURBS function. Both
the polynomial and NURBS-based surfaces are checked for
self-intersection and lowest average normalized error, and the
one with the least error and which does not self intersect is
retained. Fig. 11 is a histogram of the percentage of surfaces
with a given value of E"°™alized for those that are chosen from
the two types. Almost all the surfaces have low errors with very
few of them having errors greater than the step-size itself. These
errors can be attributed to the fact that the only lower-order
functions (third order or lower) have been considered in this
example for both the polynomial and NURBS surfaces. Higher-
order surfaces can be self-intersecting or may show unusually
sharp variations and are avoided. The larger errors may also due
to locally incorrect experimental data, such as a spike left out
by a carbide particles.

3.2.3. Cell decomposition

Spatial partitioning algorithms, such as quad-tree, octree or
BSP trees, have been extensively used in geometric modeling
for solid body representation. All these methods involve the
partitioning of a ‘universe’ solid into a number of cells, each of
which are assigned to the solid based on their containment. The
merging of these cells produces a representation of the desired
solid. These methods differ in the choice of the universe cell
and the choice of partitioning surfaces. One of the most general
methods in this class of methods is the cell-decomposition
method. In this method, an arbitrary-shaped solid is defined as
the universe cell and arbitrary-shaped surfaces are considered
as the partitioning surface. As illustrated in Fig. 12, this space
partitioning technique is used to reconstruct individual grains
from the grain surfaces constructed in the previous section. The
following sequence of steps is pursued in this reconstruction.

1. Construct the ‘Universe Cell’ (W) to wrap the set of data
points contained in a grain G, with an offset of at least twice
the step-size i.e. 2 x AL. In NX3, W is a planar offset solid
containing the data points. Ensure that W should remain
within the bounds of the actual specimen domain.

2. Select partitioning surfaces (S) as the yet unused surface
consisting of the largest number of surface points belonging
to this grain for the next partition.

3. Perform cell partitioning by selecting all the unassigned
cells, C (C = {W} for the initial cell), which contain at least
one of the points interpolated by S. Extrapolate S to partition
C into subcells CP.
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Fig. 11. Percentage of surfaces as a function of the average error Enormalized,
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Fig. 12. Schematic representation of the cell-decomposition methodology
corresponding to the steps in Section 3.2.3. The reconstructed solid grain is
the union of the assigned cells after partitioning of the universe cell.

4. Assign cells for each C P; € CP by performing containment
check inside CP; for all the points belonging to G and
all its neighbors GN. If more than 90% of the contained
points in CP; belong to G then assign it to G. If less
than 10% belong to G, assign it as GN. Otherwise leave it
unassigned. Repeat steps 2—4 till all surfaces are exhausted.
Leftover unassigned cells are assigned to G or GN based on
maximum containment of points of G and GN inside it.

5. Merge the cells assigned as G for the final grain
representation. Delete all other cells.
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Fig. 13. (a) Volumetric data points belonging to voxels constituting a grain, (b) Universe call (semi-transparent) overlaid on the grain data points.

The selection of the size of the universe cell in step 1 is
critical. If the cell is too large, then difficulties in extrapolation
of surfaces will arise during partitioning. If it is too small, then
the surfaces may not have ‘room’ for partitioning. Fig. 13 shows
the wrap solid as universe cell for one such grain. In step 3,
the selection of only those cells that have points belonging to
surface contained in them leads to a more local reconstruction.
A surface fit to one set of points in one region of solid may not
influence other regions. Using the largest surfaces described in
step 2 in conjunction with this step retains the local nature of the
reconstruction. Improvements in both accuracy and also speed
are achieved as a result. Fig. 14(a) shows the reconstructed
grain for the data points in Fig. 13(a). The surface points of this
grain are also shown in the figure to demonstrate the closeness
of the reconstructed solid to the voxelized representation.

3.3. Compatibility requirements in a polycrystalline aggregate

Individually constructed grains by the hierarchical solid
reconstruction process described in Section 3.2, when
assembled in a polycrystalline aggregate, may incur gaps and
overlaps between them. This is because the individual grain
surfaces are created in isolation from the other grains in the
ensemble. Regions occupied by more than one grain (overlaps)
and regions where there are no grains present (gaps) are
non-physical and should be removed. Additionally, geometric
artifacts generated in the process of reconstruction and gap and
overlap removal are removed through a subsequent defeaturing
process in Section 3.4.

3.3.1. Overlap removal

A schematic of the grain overlap removal algorithm is
presented in Fig. 15. Let R = [Ry, Ry, ..., Ry] be the set of
all reconstructed solid grains and V = {\Tl, Vo, ..., W} be
the set of the voxel points belonging to each grain. To avoid
confusion, the following convention is used. The union and
intersection of two sets is represented by the set operators U and
N respectively, while the union and intersections of two solids
are represented by the Boolean nomenclature Union (S, S2)
and Intersect(S1, S») etc. The overlap algorithm is outlined
next.

1. Seti =1and j =2.

Fig. 14. A single grain reconstruction showing discrete surface data points;
(a) after cell decomposition, (b) after cell decomposition with defeaturing, (c)
after overlap removal, (d) after overlap removal with defeaturing, (e) after gap
removal, and (f) after gap removal with defeaturing.

2. Find I = Intersect(R;, R;) as the set of all common volumes
shared byR; andR;. If I = {@} then go to step 8, otherwise
proceed to step 3.

3.For I € I and for all surface points Di =

{ Dij , D;j e D%ij} belonging to the interface between the

grains i and j, perfk)ln a containment test to find out points

ﬁk = {Pk, sz, R Pg} that are contained inside /.

4. Fit surface a S* to the set of points I_’k = {ﬁ, P_zk, ..

., Pky.



304 S. Ghosh et al. / Computer-Aided Design 40 (2008) 293-310

I=R NR

Fig. 15. Schematic representation of the overlap removal process: (a) two overlapping grains with identification of overlapped region I between R; and R;, (b)
partitioning of Iinto /P; and IP; using a fitted surface, (c) assignment of /P; and IP; to R; and R; respectively and creation of the resulting non-intersecting grains.

5. Partition I; with the surface S* into the solids IP =
{1Ps, 1P, ... IPK ).

6. For each IPg‘ € IP, count the number of points that lie inside
IPfas n; and n; respectively. If n; > n; then assign IP;C to
R; by performing R; = Union(R;, IP;‘), otherwise perform
R; = Union(R;, IP}).

7. Repeat steps 3—6 for all [ € L.

8. If j = M then go to step 9, otherwise, perform j = j + 1
and go to step 2.

9. If i = M then exit, otherwise, seti =i+ 1,j =i+ 1 and
go to step 2.

By fitting a separate surface in step 4, only those points
that are local to the overlapping region are included in the
partitioning process. Also the accuracy of the interface with
respect to the local microstructure is better, since the effect of
interface points from other regions is not considered. For the
overlapping regions, small enough not to contain any surface
points, no partitioning is done. Fig. 14(c) shows the effect on
the geometry of a representative grain after the overlaps have
been removed.

3.3.2. Gap removal

Fig. 16 shows a schematic of the two basic Boolean
operations required for the removal of gaps between contiguous
grains, viz. (i) identification of unassigned regions or gaps,
and (ii) assigning them to appropriate solid grains. Let G =
{G.} correspond to the current set of gaps in the set of
reconstructed grains R” = {RY, Ry ..., RY,} that have already
undergone overlap removal. G, is a solid representing the
metallic specimen. The following steps are required to remove
gaps from R, with starting values i = j = 1.

1. For RY € R set j = 1.

2. For G € G determine the set A = Subtract(G, R?).

3.If A={o}then j = j+ 1and gotostep 2. If i = M go to
step 4, otherwise evaluate G = G U A, seti =i + 1 and go
to step 1.

4. Create aset W2 = {W{, Wy, ..., Wg,} as the wrap surfaces
of each grain for all grains in the ensemble.

5. Since each of the gaps G; € G may be bigger than what
is assigned to an individual grain, they are partitioned into
smaller gaps P = {Py, P, ..., P;} with all of the wrap
surfaces W?.

6. For each P; € P, identify the reconstructed grain Rg e R°
with which it shares the maximum surface area and set
Rg = Unite(R?, P;).

From step 2, it is obvious that the process of gap identifica-
tion relies on successive subtraction of the reconstructed grains
from the entire ensemble space. Some of the gaps produced by
this process may be much larger than what can be assigned to an
individual grain. To account for such cases an additional step of
subdividing larger gaps is introduced in step 5. Choosing wrap
surfaces in this step ensures that, when these gaps are assigned
to appropriate grains, no grain exceeds its wrap boundary. Many
of the gaps are so small that they may not contain even a sin-
gle voxel inside them. Consequently, the choice of the grain to
which the gap should be assigned is not straightforward. Instead
of assigning the gap arbitrarily to its neighbors, a neighbor is
chosen which shares maximum common surface area with this
gap. The solids thus generated are relatively smooth and are
easier to mesh. Fig. 14(e) shows the effect of gap removal pro-
cess on a grain. While handling the exceptions and errors during
subtraction, care must be taken to produce no new intersections.
Otherwise, the entire overlap removal procedure may have to be
repeated.

3.4. Defeaturing spurious artifacts of the reconstructed grains

The entire process of grain reconstruction and compatibility
enforcement can lead to certain artifacts in the microstructure
that are non-physical and may cause problems at the analysis
stage. For example, a small face such as a sliver on the
grain boundary can cause problems with respect to finite
element mesh generation as well as give rise to spurious
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G={G}={Specimen cube}

Fig. 16. Steps involved in identification and removal of gaps: (a) reconstructed microstructure with overlaps removed, (b)-(e) process of subtraction of grains Rl‘.’
from G, (f) gaps identified in the previous iterations, and (g) microstructure after assigning gaps to appropriate grains. Steps of partitioning gaps are skipped in this

illustration.

high local stresses, thus affecting the quality of solutions.
Defeaturing is the process of removing these artifacts from
the reconstructed grains during their creation process prior
to their implementation in a finite element mesh and model.
Defeaturing routines are introduced at three places in the
program, viz. (i) before overlap removal, (ii) before gap
removal and (iii) before mesh generation.

The defeaturing at different stages may have different
compatibility requirements. For example, it can allow new gaps
or new overlaps to be formed prior to the overlap removal
stage. However, it should neither introduce new gaps nor
overlaps after the gap removal stage. Thus, the same procedure
for removing the artifacts is implemented in a single routine
in NX3, with the flexibility to adapt specific compatibility
requirements.

The first step in the defeaturing process is the identification
of artifacts. Although various types of non-physical features are
possible, the most common is the occurrence ‘tiny faces’ that
may be defined in NX3 as (see [31]):

1. Faces for which the surface area is less than a specified
tolerance.

2. Faces surface area to perimeter ratio is less than a specified
tolerance.

While a looser tolerance of 2 x AL may be used for larger
grains, the tolerance for smaller grains is obtained by linearly
scaling from O for a grain with zero volume to 2 x AL for a
moderate grain size.

Once the ‘tiny faces’ are identified, the defeaturing process
is carried out in two phases. In the first phase, cluster of
neighboring tiny faces are removed simultaneously using the
‘Simplify Body’ feature in NX3. If this operation fails, selecting
the faces for not removal corresponding to the failing wound
has been found to be useful. In the second phase, the leftover
individual faces in the simplified geometry are removed by
using the modeling feature ‘Replace Face’ in NX3. The face to
be removed, as well as the neighboring tool face are specified
in this operation. Unlike ‘Simplify Body’ function, specifying
different tool faces may yield different solids. The program
exploits the generation of multiple defeatured geometry for
the same solid by performing all possible ‘Replace Face’
operations and choosing the ‘best solid” with the least number
of faces.
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Fig. 17. Comparison of (a) voxel-based grain section representation of the FIB-SEM data, (b) CAD-based 3D reconstruction of the polycrystalline microstructure,

(c) meshed microstructure using an adaptive meshing process discussed in [32].

The next step restores compatibility, depending on the
constraints under which the defeaturing is being performed. For
not letting any new overlap to be introduced, the original solid
is first subtracted from the defeatured solid. Any additional
solid in the new defeatured solid is then subtracted from the
neighboring grains. To prevent the insertion of new gaps, the
defeatured solid is subtracted from the original solid. The
new additional solid thus created, is then assigned to the
neighboring grains. The final step in the defeaturing process
is to quantify the effect of all the operations on the overall
‘quality’ of the microstructure representation. Defeaturing a
grain may give it a very simple representation. On the other
hand, its neighbors may become much worse after performing
the compatibility restoration operations. To find out the effect of
the defeaturing process on the overall quality, the total number
of faces of a grain and its neighbors are compared before and
after the defeaturing process. If the number has reduced then the
defeaturing operation is assumed to be successful, otherwise
the older state is restored and the previous step is termed as
unsuccessful. The entire defeaturing algorithm is summarized
below.

Let Rg® be a reconstructed grain to be defeatured with
a wrap solid W, and with neighboring grains N, =
{RE, RGS, ..., R{®}. Let NF(S)NF(A) be functions that return
the number of faces in the solid S and the set of solids in
A respectively. The following steps are performed for the
defeaturing operation.

1. Mark faces that should not be removed in this operation as
BF = {2}

10.

. List edges E = {E{, E3, ..

. Identify all the tiny faces in Rgg asTF ={TF,,TF,, ...,

T F}. Remove all elements in TF that also belong in BF.
If TF = {2} then exit.

. For each face T F;, define a neighboring face as one that

shares at least one edge with it. Club together all the
tiny faces that are neighbors of each other, into a set C
consisting of the subsets C = {Cl, C2,...,CM}. The
subsets should satisfy the condition n(C’) > n(Ci*h),
where n(C?) is the number of faces in C'.

. Remove the set of faces C!from Rg® using the ‘Simplify

Body’ function in NX3 to obtain a new solid grain Dy =
{Dél,}. If this process is successful then go to step 7;
otherwise proceed to step 5.

., Ep} that are causing failure
of the previous operation. Remove all faces from C! that
have at least one edge common with elements of E. Add all
these faces to the set BF.

. If C! = {@)} then go to 2; otherwise go to 3.
. Set D}, =

Intersect(D}, W) for all D € Dg. When
performing this intersection chose only the largest of the
resulting solids.

. For each D;, € Dy, check if the number of faces in

NF(D}) > NF(Ry). If this is true, then set Dy = Dg —
{D}}.

. If Dg = {@} then set BF = BFU C!, C! = {@} and go to

2.
If the current mode of defeaturing is executed after gap
removal, then for each D;, € Dy, obtain the set of all
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solids resulting from subtraction of the defeatured grain
from the reconstructed grain, and unite these solids to their
copies of the neighboring grains Nig. If the current mode of
defeaturing is executed after overlap or gap removal then,
for each Dé € Dy obtain the set of all solids resulting
from subtraction of reconstructed grain from the defeatured
grain, and subtract these solids from their copies of the
neighboring grains Nj.

11. Sort elements Di, € Dy in the ascending order of n féf =
(NF(D}) + NF(N}))

12. Calculate the number of faces of the reconstructed grain
and its neighbors as nf, = (NF(Rg) + NF(Ng)). If nf, <
n fgl then delete all D[f;, € Dyg and their corresponding Nig.
Also set BF = BFUC!, C! = {@}. If this condition is not
true then replace Rg® with D}, Ng with Ng. Finally go back
to step 2.

After execution of the defeaturing algorithm, a slightly altered
algorithm is executed again. The differences are listed below.

1. Do not club together any face in step 3, define C! = {T F;}

2. Replace step 4 with the following operations. Remove the
set of faces C! from Rg® by using the ‘Replace Face’
function in NX3 to obtain all possible new solids Dy =
{Dl, D;, e, D?}. If process is successful then proceed to
step 7; otherwise set BF = BFU C!, C!' = {@} and go to
step 2.

3. Steps 5 and 6 are not required in this sweep.

Fig. 14(b), (d) and (f) show the defeatured grain after
reconstruction, overlap removal and gap removal respectively.

4. Numerical results and algorithm validation

The CAD-based methodology described in Section 3 is
now tested for reconstructing the microstructure of a fine-
grained polycrystalline nickel-base superalloy, IN100. Fig. 17
(a) shows a section of the microstructure in a voxel-based
representation using the experimental data after alignment.
Fig. 17(b) shows a 3D representation of the reconstructed
grain microstructure with the colors corresponding to a given
orientation. Visual comparison of the two figures shows good
agreement between the sections of the experimental and
simulated microstructures. The high frequency stepped patterns
in the voxel representation are smoothened in the simulated
representation with lower-order surfaces. This simplification
is desirable for convenient finite element mesh generation
and analysis. The high frequency undulations necessitate
high resolution mesh at regions where the solutions may
not require high mesh density. A better control of the local
mesh density with an optimal number of nodes and elements
are possible because of this smoothened representation. Low
frequency undulations, which are responsible for critical
local variables, e.g. high stress gradients, are retained in the
simulated microstructures. The overall reconstruction method is
comprehensive, in that it considers accuracy from an input point
of accurate (OIM data) and efficiency from an output point of
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Fig. 18. Distribution of (a) the normalized surface error sig for a simulated
grain, and (b) average normalized surface error eaverage for all grains of Fig. 17.

view (finite element analysis). Fig. 17(c) shows the results of a
meshed microstructure as detailed in [32].

For validation, each surface point 5; of a grain g, is checked
whether it is contained within the reconstructed grain geometry
(Rg). If the point lies inside the grain geometry, then the
error is zero, while for the points outside the grain it is the
projected distance to the grain surfaces normalized with the
grain diameter for the grain i.e.,

0 if 57 C Ry
8 — I projected distance (R,,s; 1
Ei proy 7 ( g l) otherwise (18)
g

where, the average grain diameter is calculated from the volume

of each grain as dy = 2 x 3% Here V; is the volume of

the voxelized FIB/SEM grain. Fig. 18(a) shows a plot of the
normalized surface error for the simulated grain of Fig. 14.
Other than a few outlying points still within the limits of
experimental error, a majority of the points are within 50% of
the experimental step-size. Good results are also seen for the
average value of this error for all grains in the microstructure
in Fig. 18(b). Table 1 shows the best and worst normalized
surface errors. Owing to the better resolution of the grain
geometry, it can be clearly observed from the table that the
larger grains tend to have lower errors, then the smaller ones.
This is an important result for this work, as it shows the
importance of high resolution experimental data for the process
of reconstruction.
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Table 1
Average normalized surface error for the grains in the microstructure

Grain Average normalized surface error Grain volume (meS)

0.002264
0.018129
0.07111

472.1875
29.89538
0.71875

Best grain
Median grain
Worst grain
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Fig. 19. Comparison of the distribution of (a) grain volume and (b) number
of neighbors for the experimental voxel-based microstructure with that for the
simulated microstructure.

Figs. 19 and 20 compare the distribution of the volume,
number of neighbors of each grain and moment of inertia
for the experimental voxel-based microstructure with the
simulated microstructure. Excellent match is observed for these
parameters. However the distribution of the surface areas
in Fig. 21 shows a significant difference between the two
microstructures. As expected, the reconstructed grain’s smooth
surface area is much smaller than that for the stair-case stepped
surface of the voxel-based representation.

Over 125,000 faces in voxel-based representation are
replaced by about 4000 faces in the CAD simulated
microstructure. A significantly lower number of surface nodes
are expected in the finite element mesh for the simulated
microstructure. Also the simulated microstructure enjoys the
flexibility with respect to choice of elements with density
control.
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Fig. 20. Comparison of moment of inertia between voxel-based microstructure
and simulated microstructure.
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Fig. 21. Comparison of the distribution of surface area for the experimental
voxel-based microstructure with that for the simulated microstructure.

5. Conclusion

This paper is aimed at the development of a robust and
comprehensive CAD-based methodology for simulating 3D
microstructures of polycrystalline metals using crystallographic
input data on sections created by a focused ion beam
(FIB)—scanning electron microscopy (SEM) system. The 3D
dual-beam FIB-SEM is very effective for serial-sectioning
micron/submicron scale metallic specimens and subsequently
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obtaining crystallographic orientation maps for each section.
Orientation maps from each of these sections are then stacked
to yield voxelized representation of the microstructure. The
method developed in this paper is able to reconstruct consistent
polycrystalline microstructures from this data, with control
on the resolution and morphological details necessary for
meaningful computational analysis in microstructure-property
estimation.

The microstructure simulation methodology is based on a
hierarchical geometrical representation using primitives used
in CAD modeling. With the help of crystallographic orientation
information, grains are first segmented as a collection of voxels.
Data cleanup is then performed to eliminate any un-indexed
or incorrectly indexed measurements. Points on the interface
belonging to each pair of neighboring grains are identified from
misorientation data in contiguous voxels. Parametric surface
segments with least squares are fit to the interface data are
then constructed adaptively using polynomial and NURBS
functions. Following this, the cell-decomposition algorithm
creates volumetric rendering of the grains as a 3D domain
enclosed by the surfaces. A geometric defeaturing operation is
performed to remove any unwanted kinks from the simulated
microstructure. Since the grains are individually created in
isolation, their assembly in polycrystalline aggregates may
cause problems with respect to inter-grain compatibility. For
example there may be residual overlaps and gaps among
the assembled grains. Boolean operations are executed for
exhaustive gap and overlap removal to create clean ‘water-tight’
grain boundaries. This is again followed by the defeaturing
routine to avoid the creation of any spurious features as a
result. The overall polycrystalline microstructure simulation
algorithm is validated using various error criteria and measures,
for an extracted microstructure of a nickel superalloy. The
metrics include local and global errors in projected distances
to the grain interfaces, distribution of volume, surface area and
number of neighbors etc. All of these tests attest to the excellent
microstructures that can be simulated by this method. They
provide a benchmark for any stereological calculations that can
be subsequently conducted.

Microstructures simulated by this method can find direct
application in material modeling for microstructure-property
relations. These include statistical quantification in terms
of distributions functions and crystal plasticity-based finite
element simulations for predicting microstructural variables
and response. A significant strength of this method is that it
is entirely possible to monitor and control the resolution of the
simulated microstructure and retain one that is ‘optimal’ with
respect to the accuracy and efficiency needed for modeling.
Hence it can go a long way in the effective analysis and
design of microstructures. Details on the finite element mesh
generation for these microstructures and their analyses are
currently under development will be reported in a future paper.
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